Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 53, 2018 - Issue 6
164
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

In situ electrochemical manipulation of oxidation-reduction potential in saturated subsurface matrices

, &
Pages 517-523 | Received 21 Sep 2017, Accepted 06 Dec 2017, Published online: 18 Jan 2018

References

  • Coates, J. D.; Woodward, J.; Allen, J.; Philp, P.; Lovley, D. R. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl. Environ. Microbiol. 1997, 63(9), 3589–3593.
  • Cookson, Jr., J. T. Bioremediation Engineering: Design and Application. McGraw-Hill, Inc.: New York, 1995.
  • ITRC (Interstate Technology Regulatory Council). Technical/Regulatory Guidelines: A Systematic Approach to In Situ Bioremediation in Groundwater. Interstate Technology Regulatory Council, In Situ Bioremediation Team ISB-8: Washington, DC, 2007. Available at http://www.itrcweb.org/GuidanceDocuments/ISB-8.pdf (accessed 3 April 2017).
  • Jin, S.; Fallgren, P. H.; Bilgin, A. A.; Morris, J. M.; Barnes, P. W. Bioremediation of benzene, ethylbenzene, and xylenes in groundwater under iron-amended, sulfate-reducing conditions. Environ. Toxicol. Chem. 2007, 26(2), 249–253. doi:10.1897/06-234R.1.
  • Van Hamme, J. D.; Singh, A.; Ward, O. P. Recent advances in petroleum microbiology. Microbiol. Molec. Biol. Rev. 2003, 67(4), 503–549. doi:10.1128/MMBR.67.4.503-549.2003.
  • ITRC (Interstate Technology and Regulatory Council). In Situ Bioremediation of Chlorinated Ethene: DNAPL Source Zones. BioDNAPL-3. Interstate Technology and Regulatory Council, Bioremediation of DNAPLs Team: Washington, DC, 2008. Available at http://www.itrcweb.org (accessed 3 April 2017).
  • Bedard, D. L.; Ritalahti, K. M.; Loffler, F. E. The Dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260. Appl. Environ. Microbiol. 2007, 73(8), 2513–2521. doi:10.1128/AEM.02909-06.
  • Maymo-Gatell, X.; Tandoi, V.; Gossett, J. M.; Zinder, S. H. Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis. Appl. Environ. Microbiol. 1995, 6(11), 3928–3933.
  • Maymo-Gatell, X.; Nijenhuis, I.; Zinder, S. H. Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by Dehalococcoides Ethenogenes. Environ. Sci. Technol. 2001, 35(3), 516–521. doi:10.1021/es001285i.
  • Macalady, D. L.; Tratnyek, P. G.; Grundl, T. J. Abiotic Reduction reactions of anthropogenic organic chemicals in anaerobic systems: A critical review. J. Contam. Hydrol. 1986, 1(1), 1–28. doi:10.1016/0169-7722(86)90004-5.
  • Wolfe, N. L.; Macalady, D. L. New perspectives in aquatic redox chemistry: Abiotic transformations of pollutants in groundwater and sediments. J. Contam. Hydrol. 1992, 9(1), 17–34. doi:10.1016/0169-7722(92)90048-J.
  • Butler, E. C.; Hayes, K. F. Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal. Environ. Sci. Technol. 2001, 35(19), 3884–3891. doi:10.1021/es010620f.
  • Gorski, C. A.; Nurmi, J. T.; Tratnyek, P. G.; Hofstetter, T. B.; Scherer, M. M. Redox behavior of magnetite: Implications for contaminant reduction. Environ. Sci. Technol. 2009, 44(1), 55–60. doi:10.1021/es9016848.
  • Elsner, M.; Schwarzenbach, R. P.; Haderlein, S. B. Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants. Environ. Sci. Technol. 2004, 38(3), 799–807. doi:10.1021/es0345569.
  • Kriegman-King, M. R.; Reinhard, M. Transformation of carbon tetrachloride by pyrite in aqueous solution. Environ. Sci. Technol. 1994, 28(4), 692–700. doi:10.1021/es00053a025.
  • Lee, W.; Batchelor, B. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite. Environ. Sci. Technol. 2002, 36(23), 5147–5154. doi:10.1021/es025836b.
  • O'Loughlin, E. J.; Burris, D. R. Reduction of halogenated ethanes by green rust. Environ. Toxicol. Chem. 2004, 23(1), 41–48. doi:10.1897/03-45.
  • Struyk, Z.; Sposito, G. Redox properties of standard humic acids. Geoderma 2001, 102(3), 329–346. doi:10.1016/S0016-7061(01)00040-4.
  • Szulczewski, M. D.; Helmke, P. A.; Bleam, W. F. XANES spectroscopy studies of Cr(VI) reduction by thiols in organosulfur compounds and humic substances. Environ. Sci. Technol. 2001, 35(6), 1134–1141. doi:10.1021/es001301b.
  • Uchimiya, M.; Stone, A. T. Reversible redox chemistry of quinones: Impace on biogeochemical cycles. Chemosphere 2009, 77(4), 451–458. doi:10.1016/j.chemosphere.2009.07.025.
  • Bardiya, N.; Bae, J.-H. Dissimilatory perchlorate reduction: A review. Microb. Res. 2011, 166, 237–254. doi:10.1016/j.micres.2010.11.005.
  • Dolfing, J.; van Eekert, M.; Seech, A.; Vogan, J.; Mueller, J. In situ chemical reduction (ISCR) technologies: Significance of low Eh reactions. Soil Sed. Contam. 2008, 17, 63–74.
  • Tratnyek, P. G.; Macalady, D. L. Oxidation-reduction reactions in the aquatic environment. In Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences; Mackay, D., Boethling, R. S., Eds.; Lewis Publishers: Boca Raton, FL, 2000; 383–415.
  • Fruchter, J. S.; Cole, C. R.; Williams, M. D.; Vermeul, V. R.; Amonette, J. E.; Szecsody, J. E.; Istok, J. D.; Humphrey, M. D. Creation of a subsurface permeable treatment zone for aqueous chromate contamination using in situ redox manipulation. Groundwater Monitor. Rem. 2000, 20(2), 66–77. doi:10.1111/j.1745-6592.2000.tb00267.x.
  • Szecsody, J. E.; Fruchter, J. S.; Williams, M. D., Vermeul, V. R.; Sklarew, D. In situ chemical reduction of aquifer sediments: Enhancement of reactive iron phases and TCE dechlorination. Environ. Sci. Technol. 2004, 38(17), 4656–4663. doi:10.1021/es034756k.
  • Virkutyte, J.; Sillanpaa, M.; Latostenmaa, P. Electrokinetic soil remediation—Critical overview. Sci. Total Environ. 2002, 289(1–3), 97–121. doi:10.1016/S0048-9697(01)01027-0.
  • Gomes, H. I.; Dias-Ferreira, C.; Ribeiro, A. B. Electrokinetic remediation of organochlorines in soil: Enhancement techniques and integration with other remediation technologies. Chemosphere 2012, 87(10), 1077–1090. doi:10.1016/j.chemosphere.2012.02.037.
  • Mao, X.; Wang, J.; Ciblak, A.; Cox, E. E.; Riis, C.; Terkelsen, M.; Gent, D. B.; Alshawabkeh, A. N. Electrokinetic-enhanced bioaugmentation for remediation of chlorinated solvents in clay. J. Hazard. Mater. 2012, 213–214, 311–317. doi:10.1016/j.jhazmat.2012.02.001.
  • Jin, S.; Fallgren, P. H.; Morris, J. M.; Edgar, E. S. Degradation of trichloroethene in water by electron supplementation. Chem. Eng. J. 2008, 140(1–3), 642–645. doi:10.1016/j.cej.2008.01.035.
  • Jin, S.; Fallgren, P. H. Electrically induced reduction of trichloroethene in clay. J. Hazard. Mater. 2010, 173(1–3), 200–204. doi:10.1016/j.jhazmat.2009.08.069.
  • Luo, H.; Jin, S.; Fallgren, P. H.; Colberg, P. J. S.; Johnson, P. A. Prevention of iron passivation and enhancement of nitrate reduction by electron supplementation. Chem. Eng. J. 2010, 160(1), 185–189. doi:10.1016/j.cej.2010.03.036.
  • Chen, L.; Jin, S.; Fallgren, P. H.; Swoboda-Colberg, N. G.; Liu, F.; Colberg, P. J. S. Electrochemical depassivation of zero-valent iron for trichloroethene reduction. J. Hazard. Mater. 2012, 239–240, 265–269. doi:10.1016/j.jhazmat.2012.08.074.
  • Zhang, M.; Wang, H.; Jin, S.; Fallgren, P. H.; Colberg, P. J. S. Electrochemically enhanced reduction of trichloroethene by passivated zero-valent iron. J. Environ. Chem. Eng. 2016, 4(1), 599–604. doi:10.1016/j.jece.2015.12.013.
  • Rahner, D.; Ludwig, G.; Rohrs, J. Electrochemically induced reactions in soils – a new approach to the in-situ remediation of contaminated soils? Part 1: The microconductor principle. Electrochim. Acta 2002, 47(9), 1395–1403. doi:10.1016/S0013-4686(01)00854-4.
  • Mao, X.; Ciblak, A.; Amiri, M.; Alshawabkeh, A. N. Redox control for electrochemical dechlorination of trichloroethylene in bicarbonate aqueous media. Environ. Sci. Technol. 2011, 45(15), 6517–6523. doi:10.1021/es200943z.
  • USGS (United States Geological Survey). Alluvial and Bedrock Aquifers of the Denver Basin—Eastern Colorado's Dual Ground-Water Resource, U.S. Geological Survey: Denver, CO, 1989. Available at https://pubs.usgs.gov/wsp/2302/report.pdf (accessed 15 April 2017).
  • Revil, A.; Karaoulis, M.; Johnson, T.; Kemna, A. Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol. J. 2012, 20, 617–658. doi:10.1007/s10040-011-0819-x.
  • Christensen, T. H.; Bjerg, P. L.; Banwart, S. A.; Jakobsen, R.; Heron, G.; Albrechtsen, H.-J. Characterization of redox conditions in groundwater contaminant plumes. J. Contam. Hydrol. 2000, 45, 165–241. doi:10.1016/S0169-7722(00)00109-1.
  • Jin, S.; Fallgren, P. H. 16 – Feasibility of using bioelectrochemical systems for bioremediation. In Microbial Biodegradation and Bioremediation;Das, S., Ed.; Elsevier: London, 2014; 389–405.
  • Thrash, J. C.; Coates, J. D. Review: Direct and indirect electrical stimulation of microbial metabolism. Environ. Sci. Technol. 2008, 42(11), 3921–393. doi:10.1021/es702668w.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.