Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 53, 2018 - Issue 6
1,218
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

Remediation of water and wastewater by using engineered nanomaterials: A review

, , , , &
Pages 537-554 | Received 28 Jun 2017, Accepted 28 Dec 2017, Published online: 24 Jan 2018

References

  • Berekaa, M. M. Nanotechnology in wastewater treatment; influence of nanomaterials on microbial systems: Review article. Int. J. Curr. Microbiol. App. Sci. 2016, 5(1), 713–726. doi:10.20546/ijcmas.2016.501.072.
  • Thines, R. K.; Mubarak, N. M.; Nizamuddin, S.; Sahu, J. N.; Abdullah, E. C.; Ganesan, P. Application potential of carbon nanomaterials in water and wastewater treatment: A review. J. Taiwan. Inst. Chem. Eng. 2017, 72, 116–133.
  • Ibrahim, R. K.; Hayyan, M.; AlSaadi, M. A.; Hayyan, A.; Ibrahim, S. Environmental application of nanotechnology: Air, soil, and water. Environ. Sci. Pollut. Res. 2016, 23(14), 13754–13788.
  • Amin, M. T.; Alazba, A. A.; Manzoor, U. A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv. Mater. Sci. Eng. 2014, 2014, 1–25.
  • Apul, O. G.; Karanfil, T. Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review. Water. Res. 2015, 68, 34–55.
  • Saliby, I. J. E.; Shon, H. K.; Kandasamy, J.; Vigneswaran, S. Nanotechnology for wastewater treatment: In brief. Water. Wastewater Treat. Technol. 2016, 3–15.
  • Lu, H.; Wang, J.; Wang, T.; Wang, N.; Bao, Y.; Hao, H. Crystallization techniques in wastewater treatment: An overview of applications. Chemosphere. 2017, 173, 474–484.
  • Patil, B. B. T. Wastewater treatment using nanoparticles. Adv. Chem. Eng. 2015, 5(3), 1–3.
  • Goh, P. S.; Matsuura, T.; Ismail, A. F.; Hilal, N. Recent trends in membranes and membrane processes for desalination. Desalination. 2016, 391, 43–60.
  • Samanta, H. S.; Das, R.; Bhattachajee, C. Influence of nanoparticles for wastewater treatment: A short review. Wastewater Treat. 2016, 3(3), 1–6.
  • Poinern, G. E. J.; Chapman, P.; Shah, M.; Fawcett, D. Green biosynthesis of silver nanocubes using the leaf extracts from eucalyptus macrocarpa. Nano. Bull. 2013, 2(1), 130101.
  • Jain, S.; Pal, A. Nanotechnology: An emerging area in the field of dentistry. J. Dent. Sci. 2013, 1–9.
  • Paull, J.; Lyons, K. Nanotechnology: The next challenge for organics. J. Org. Syst. 2008, 3(1), 3–22.
  • Bastidas-Arteaga, E.; Schoefs, F.; Stewart, M. G.; Wang, X.; Rao, N. V.; Rajasekhar, M. The future of civil engineering with the influence and impact of nanotechnology on properties of materials. Procedia. Mater. Sci. 2015, 51, 259–266.
  • Lu, H.; Wang, J.; Stoller, M.; Wang, T.; Bao, Y.; Hao, H. An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng. 2016, 2016, 1–10.
  • Khin, M. M.; Screekumaran, N. A.; Babu, J. V. Overview of nanomaterials for cleaning up the environment. Sci. Environ. Policy. 2012, 5(305), 8075–8109.
  • Bera, A.; Belhaj, H. Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery: A comprehensive review. J. Nat. Gas. Sci. Eng. 2016, 34, 1284–1309. doi:10.1016/j.jngse.2016.08.023.
  • FDA. Guidance Documents – Guidance for Industry: Safety of Nanomaterials in Cosmetic Products. Food and Drug Administration, New Hampshire, 2014, 1–16. Available from: https://www.fda.gov/Cosmetics/GuidanceRegulation/GuidanceDocuments/ucm300886.htm. (Accessed on 12th October 2017).
  • Padmavathy, K. S.; Madhu, G.; Haseena, P. V. A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr(VI)) from wastewater by magnetite nanoparticles. Procedia Technol. 2016, 24, 585–594. doi:10.1016/j.protcy.2016.05.127.
  • Kyzas, G. Z.; Matis, K. A. Nanoadsorbents for pollutants removal: A review. J. Mol. Liq. 2015, 203, 159–168. doi:10.1016/j.molliq.2015.01.004.
  • Bora, T.; Dutta, J. Applications of nanotechnology in wastewater treatment: A review. J. Nanosci. Nanotechnol. 2014, 14(1), 613–626. doi:10.1166/jnn.2014.8898.
  • Liu, J.; Tian, J.; Wang, Z.; Zhao, D.; Jia, F.; Dong, B. Mechanism analysis of powdered activated carbon controlling microfiltration membrane fouling in surface water treatment. Colloids Surfaces. A. Physicochem. Eng. Asp. 2017, 517, 45–51. doi:10.1016/j.colsurfa.2017.01.009.
  • Brame, J.; Li, Q.; Alvarez, P. J. J. Nanotechnology-enabled water treatment and reuse: emerging opportunities and challenges for developing countries. Trends. Food. Sci. Technol. 2011, 22(11), 618–624. doi:10.1016/j.tifs.2011.01.004.
  • Fakoya, M. F.; Shah, S. N. Emergence of nanotechnology in the oil and gas industry: Emphasis on the application of silica nanoparticles. Petroleum. 2017, 1–15.
  • Kunhikrishnan, A.; Shon, H. K.; Bolan, N. S.; El Saliby, I.; Vigneswaran, S. Sources, distribution, environmental fate, and ecological effects of nanomaterials in wastewater streams. Crit. Rev. Environ. Sci. Technol. 2015, 45(4), 277–318. doi:10.1080/10643389.2013.852407.
  • Bakshi, S.; He, Z. L.; Harris, W. G. Natural nanoparticles: Implications for environment and human health. Crit. Rev. Environ. Sci. Technol. 2015, 45(8), 861–904. doi:10.1080/10643389.2014.921975.
  • Sulekha, M. Nanotechnology for waste water treatment. Int. J. Chem. Stud. 2016, 4(2), 22–24.
  • Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114(15), 7610–7630. doi:10.1021/cr400544s.
  • Kunduru, K. R; Nazarkovsky, M.; Farah, S.; Pawar, R. P.; Basu, A.; Domb, A. J. Nanotechnology for water purification: Applications of nanotechnology methods in wastewater treatment. In Water Purification. Academic Press: London, UK, 2017; 33–74.
  • Das, R.; Ali, M. E.; Hamid, S. B. A.; Ramakrishna, S.; Chowdhury, Z. Z. Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination. 2014, 336(1), 97–109. doi:10.1016/j.desal.2013.12.026.
  • Bhatia, S. Nanoparticles types, classification, characterization, fabrication methods and natural drug delivery systems. Nat. Polym. Drug Deliv. Syst. 2016, 3(2), 2–62.
  • Dong, H.; Gao, Y.; Sinko, P. J.; Wu, Z.; Xu, J.; Jia, L. The nanotechnology race between China and the United States. Nano. Today. 2016, 11, 7–12. doi:10.1016/j.nantod.2016.02.001.
  • Gao, Y.; Jin, B.; Shen, W.; Sinko, P. J.; Xie, X.; Zhang, H.; Jia, L. China and the United States-global partners, competitors and collaborators in nanotechnology development. Nanomedicine Nanotechnology Biol. Med. 2016, 12(1), 13–19. doi:10.1016/j.nano.2015.09.007.
  • Appelbaum, R. P.; Gebbie, M. A.; Han, X.; Stocking, G.; Kay, L. Will China's quest for indigenous innovation succeed? Some lessons from nanotechnology. Technol. Soc. 2016, 46, 149–163. doi:10.1016/j.techsoc.2016.03.004.
  • Wiesner, M.; Li, Q.; Burgess, J.; Kaegi, R.; Dixon, D. Progress towards the responsible application of nanotechnology for water treatment. Water Res. 2013, 47(12), 3865. doi:10.1016/j.watres.2013.05.005.
  • Bethi, B.; Sonawane, S. H.; Bhanvase, B. A.; Gumfekar, S. P. Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chem. Eng. Process.: Process Intensif. 2016, 109, 178–189. doi:10.1016/j.cep.2016.08.016.
  • Castañeda, R.; León, S.; Robles-belmont, E.; Záyago, E. Review of nanotechnology value chain for water treatment applications in Mexico. Resour. Technol. 2017, 3(1), 1–11
  • Kharisov, B. I.; Dias, H. V. R.; Kharissova, O. V.; Jime, M. Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC. Adv. 2012, 2, 9325–9358. doi:10.1039/c2ra20812a.
  • Shahana, A.; Vijayalaksmi, J.; Gnana, S. P.; Pandia, R. A.; Dheenadayalan, M. S. A study of nanotechnology in wastewater. Int. J. Res. Sci. Eng. Technol. 2016, 3(I), 1–7.
  • Lovatel, R. H.; Neves, R. M.; Oliveira, G. R.; Mauler, R. S.; Crespo, J. S.; Carli, L. N.; Giovanela, M. Disinfection of biologically treated industrial wastewater using montmorillonite/alginate/nanosilver hybrids. J. Water Process. Eng. 2015, 7, 273–579. doi:10.1016/j.jwpe.2015.07.003.
  • Chang, H. H.; Cheng, T. J.; Huang, C. P.; Wang, G. S. Characterization of titanium dioxide nanoparticle removal in simulated drinking water treatment processes. Sci. Total. Environ. 2017, 601, 886–894. doi:10.1016/j.scitotenv.2017.05.228.
  • Zhang, Y.; Wu, B.; Xu, H.; Liu, H.; Wang, M.; He, Y.; Pan, B. Nanomaterials-enabled water and wastewater treatment. Nano. Impact. 2016, 3–4, 22–39.
  • Li, Q.; Mahendra, S.; Lyon, D. Y.; Brunet, L.; Liga, M. V.; Li, D.; Alvarez, P. J. J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 2008, 42(18), 4591–4602. doi:10.1016/j.watres.2008.08.015.
  • Brugnera, M. F.; Miyata, M.; Fujimura, L. C. Q.; Zanoni, M. V. B. Silver ion release from electrodes of nanotubes of TiO2 impregnated with Ag nanoparticles applied in photoelectrocatalytic disinfection. J. Photochem. Photobiol. A. Chem. 2014, 278, 1–8. doi:10.1016/j.jphotochem.2013.12.020.
  • Solís-Casados, D.; Escobar-Alarcón, L.; Fernández, M.; Valencia, F. Malachite green degradation in simulated wastewater using Nix:TiO2 thin films. Fuel. 2013, 110, 17–22. doi:10.1016/j.fuel.2012.10.042.
  • Sapkal, R. T.; Shinde, S. S.; Mahadik, M. A.; Mohite, V. S.; Waghmode, T. R.; Govindwar, S. P.; Rajpure, K. Y.; Bhosale, C. H. Photoelectrocatalytic decolorization and degradation of textile effluent using ZnO thin films. J. Photochem. Photobiol. B. Biol. 2012, 114, 102–107. doi:10.1016/j.jphotobiol.2012.05.016.
  • Liu, X. T.; Wang, M. S.; Zhang, S. J.; Pan, B. C. Application potential of carbon nanotubes in water treatment: A review. J. Environ. Sci. 2013, 25(7), 1263–1280. doi:10.1016/S1001-0742(12)60161-2.
  • Motshekga, S. C.; Ray, S. S. Highly efficient inactivation of bacteria found in drinking water using chitosan-bentonite composites: modelling and breakthrough curve analysis. Water Res. 2017, 111, 213–223. doi:10.1016/j.watres.2017.01.003.
  • Zarpelon, F.; Galiotto, D.; Aguzolli, C.; Carli, L. N.; Figueroa, C. A.; Baumvol, I. J. R.; Machado, G.; Crespo, J. D. S.; Giovanela, M. Removal of coliform bacteria from industrial wastewaters using polyelectrolytes/silver nanoparticles self-assembled thin films. J. Environ. Chem. Eng. 2016, 4(1), 137–146. doi:10.1016/j.jece.2015.11.013.
  • Krishnamoorthy, K.; Veerapandian, M.; Zhang, L.; Yun, K.; Kim, S. Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J. Phys. Chem. B. 2012, 116, 17280–17287.
  • Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H.; Zhou, R. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8(8), 594–601. doi:10.1038/nnano.2013.125.
  • Iconaru, S. L; Guégan, R.; Popa, C. L.; Motelica-Heino, M.; Ciobanu, C. S.; Predoi, D. Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal. Appl. Clay. Sci. 2016, 134, 128–135. doi:10.1016/j.clay.2016.08.019.
  • Adeli, M.; Yamini, Y. Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples. Arab. J. Chem. 2017, 10, S514–S521. doi:10.1016/j.arabjc.2012.10.012.
  • Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211–212, 317–331. doi:10.1016/j.jhazmat.2011.10.016.
  • De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 2016, 9, 10–40.
  • Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S. K.; Grace, A. N.; Bhatnagar, A. Role of nanomaterials in water treatment applications: A review. Chem. Eng. J. 2016, 306, 1116–1137. doi:10.1016/j.cej.2016.08.053.
  • Anjum, M.; Miandad, R.; Waqas, W.; Gehany, F. Remediation of wastewater using various nano-materials. Arab. J. Chem. 2016. Online paper. Available from: http://www.sciencedirect.com/science/article/pii/S1878535216301757. (Accessed on 25th September 2017). doi:10.1016/j.arabjc.2016.10.004.
  • de Caprariis, B.; De Filippis, P.; Hernandez, A. D.; Petrucci, E.; Petrullo, A.; Scarsella, M.; Turchi, M. Pyrolysis wastewater treatment by adsorption on biochars produced by poplar biomass. J. Environ. Manage. 2017, 197, 231–238. doi:10.1016/j.jenvman.2017.04.007.
  • Nowack, B. Pollution prevention and treatment using nanotechnology. Nanotechnology. 2008, 2, 1–12.
  • Peng, W.; Li, H.; Liu, Y.; Song, S. A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 2017, 230, 496–504. doi:10.1016/j.molliq.2017.01.064.
  • Vu, H. C.; Dwivedi, A. D.; Le, T. T.; Seo, S.; Kim, E.; Chang, Y. Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr(VI) and As(V) from aqueous solutions: Role of crosslinking metal cations in pH control. Chem. Eng. J. 2017, 307, 220–229. doi:10.1016/j.cej.2016.08.058.
  • Olivera, S.; Muralidhara, H. B.; Venkatesh, K.; Guna, V. K.; Gopalakrishna, K.; Kumar, K. Y. Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: A review. Carbohydr. Polym. 2016, 153, 600–618. doi:10.1016/j.carbpol.2016.08.017.
  • Chowdhury, S.; Balasubramanian, R. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv. Colloid Interface Sci. 2014, 204, 35–56. doi:10.1016/j.cis.2013.12.005.
  • Elma, M.; Yacou, C.; Diniz da Costa, J. C.; Wang, D. K. Performance and long term stability of mesoporous silica membranes for desalination. Membranes (Basel). 2013, 3(3), 136–150. doi:10.3390/membranes3030136.
  • Cheng, J. S.; Du, J.; Zhu, W. Facile synthesis of three-dimensional chitosan-graphene mesostructures for reactive black 5 removal. Carbohydr. Polym. 2012, 88(1), 61–67. doi:10.1016/j.carbpol.2011.11.065.
  • Crini, G.; Badot, P. M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci. 2008, 33(4), 399–447. doi:10.1016/j.progpolymsci.2007.11.001.
  • Vunain, E.; Mishra, A. K.; Mamba, B. B. Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review. Int. J. Biol. Macromol. 2016, 86, 570–186. doi:10.1016/j.ijbiomac.2016.02.005.
  • Yunus, I. S.; Harwin, K. A.; Adityawarman, D.; Indarto, A. Nanotechnologies in water and air pollution treatment. Environ. Technol. Rev. 2012, 2515(July 2015), 1–13.
  • Prachi, P. G.; Madathil, D.; Nair, A. N. B. Nanotechnology in Waste Water Treatment: A review. Int. J. Chem.Tech. Res. 2013, 5(5), 2303–2308.
  • Lalley, J.; Han, C.; Li, X.; Dionysiou, D. D.; Nadagouda, M. N. Phosphate adsorption using modified iron oxide-based sorbents in lake water: Kinetics, equilibrium, and column tests. Chem. Eng. J. 2016, 284, 1386–1396. doi:10.1016/j.cej.2015.08.114.
  • Devatha, C. P.; Kumar, A.; Katte, S. Y. Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J. Clean Prod. 2016, 139, 1425–1435. doi:10.1016/j.jclepro.2016.09.019.
  • Reddy, D. H. K.; Yun, Y. S. Spinel ferrite magnetic adsorbents: Alternative future materials for water purification. Coord. Chem. Rev. 2016, 315, 90–111. doi:10.1016/j.ccr.2016.01.012.
  • Tang, S. C. N.; Lo, I. M. C. Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Res. 2013, 47(8), 2613–2632. doi:10.1016/j.watres.2013.02.039.
  • Pratt, A. Environmental applications of magnetic nanoparticles. Front. Nanoscience. 2014, 6, 259–307. doi:10.1016/B978-0-08-098353-0.00007-5.
  • Mohammed, L.; Gomaa, H. G.; Ragab, D.; Zhu, J. Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology. 2017, 30, 1–14. doi:10.1016/j.partic.2016.06.001.
  • Lunge, S. S.; Singh, S.; Sinha, A. Magnetic nanoparticle: Synthesis and environmental applications. Int. Conf. Chem., Civil Environ. Eng. (CCEE2014) Nov 18–19. 2014, 18–20.
  • Warner, M. G.; Warner, C. L.; Addleman, R. S.; Yantasee, W. Magnetic nanomaterials for environmental applications. In Nanotechnologies for the Life Sciences. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011, 5–15.
  • Tran, D. L.; Le, V. H.; Pham, H. L.; Hoang, T. M. N.; Nguyen, T. Q.; Luong, T. T.; Luong, T. T.; Ha, P. T.; Nguyen, X. P. Biomedical and environmental applications of magnetic nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 1(4), 45013. doi:10.1088/2043-6262/1/4/045013.
  • Bai, H.; Liu, Z.; Sun, D. D. Highly water soluble and recovered dextran coated Fe3O4 magnetic nanoparticles for brackish water desalination. Sep. Purif. Technol. 2011, 81(3), 392–399. doi:10.1016/j.seppur.2011.08.007.
  • Simeonidis, K.; Kaprara, E.; Samaras, T.; Angelakeris, M.; Pliatsikas, N.; Vourlias, G. Optimizing magnetic nanoparticles for drinking water technology: The case of Cr (VI). Sci. Total. Environ. 2015, 535, 61–68. doi:10.1016/j.scitotenv.2015.04.033.
  • Qu, X.; Alvarez, P. J. J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47(12), 3931–3946. doi:10.1016/j.watres.2012.09.058.
  • Demming, A. Big challenges and nanosolutions. Nanotechnology. 2011, 22(29), 290201. doi:10.1088/0957-4484/22/29/290201.
  • Jiao, J.; Zhao, J.; Pei, Y. Adsorption of Co(II) from aqueous solutions by water treatment residuals. J. Environ. Sci. (China). 2016, (Ii), 1–8.
  • Song, B.; Zhang, C.; Zeng, G.; Gong, J.; Chang, Y.; Jiang, Y. Antibacterial properties and mechanism of graphene oxide-silver nanocomposites as bactericidal agents for water disinfection. Arch. Biochem. Biophys. 2016, 604, 167–176. doi:10.1016/j.abb.2016.04.018.
  • Salah, T. A.; Mohammad, A. M.; Hassan, M. A.; El-Anadouli, B. E. Development of nano-hydroxyapatite/chitosan composite for cadmium ions removal in wastewater treatment. J. Taiwan Inst. Chem. Eng. 2014, 45(4), 1571–1577. doi:10.1016/j.jtice.2013.10.008.
  • Nassar, N. N.; Arar, L. A.; Marei, N. N.; Abu, G. M. M; Dwekat, M. S.; Sawalha, S. H. Treatment of olive mill based wastewater by means of magnetic nanoparticles: Decolourization, dephenolization and COD removal. Environ. Nanotechnology. Monit. Manag. 2014, 1–2, 14–23. doi:10.1016/j.enmm.2014.09.001.
  • Shirsath, D. S.; Shirivastava, V. S. Adsorptive removal of heavy metals by magnetic nanoadsorbent: An equilibrium and thermodynamic study. Appl. Nanosci. 2015, 927–935. doi:10.1007/s13204-014-0390-6.
  • Dhillon, A.; Kumar, D. Dual adsorption behaviour of fluoride from drinking water on Ca-Zn(OH)2CO3 adsorbent. Surf. Interfaces. 2017, 6, 154–161. doi:10.1016/j.surfin.2017.01.006.
  • Jiao, J.; Zhao, J.; Pei, Y. Adsorption of Co(II) from aqueous solutions by water treatment residuals. J. Environ. Sci. 2016, 52(Ii), 232–239.
  • Jeremie, C.; Bradu, C.; Morin-crini, N. S.; Bertrand, S.; Peter, W.; Giangiacomo, T.; Pierre-Marie, B.; Gregorio, C. Pollutant removal from industrial discharge water using individual and combined effects of adsorption and ion-exchange processes: Chemical abatement. J. Saudi Chem. Soc. 2016, 20, 185–194. doi:10.1016/j.jscs.2013.03.007.
  • Lydakis-simantiris, N.; Riga, D.; Katsivela, E.; Mantzavinos, D.; Xekoukoulotakis, N. P. Disinfection of spring water and secondary treated municipal wastewater by TiO2 photocatalysis. Desalination. 2010, 250, 351–355. doi:10.1016/j.desal.2009.09.055.
  • Yousefi, M.; Ghoochani, M.; Hossein, M. A. Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht City, Northwest of Iran. Ecotoxicol. Environ. Saf. 2017, 148, 426–430. doi:10.1016/j.ecoenv.2017.10.057.
  • Mohseni-Bandpi, A.; Kakavandi, B.; Kalantary, R. R.; Azari, A.; Keramati, A. Development of a novel magnetite-chitosan composite for the removal of fluoride from drinking water: Adsorption modeling and optimization. RSC. Adv. 2015, 5(89), 73279–73289. doi:10.1039/C5RA11294J.
  • Zhao, X.; Liu, D.; Huang, H.; Zhang, W.; Yang, Q.; Zhong, C. The stability and defluoridation performance of MOFs in fluoride solutions. Microporous Mesoporous Mater. 2014, 185, 72–78. doi:10.1016/j.micromeso.2013.11.002.
  • Bhagawan, B. S. K.; Himabindu, D.; Cherukuri, V. Removal of fluoride from drinking water by adsorption onto activated alumina and activated carbon. Int. J. Eng. Res. Appl. 2015, 5(8), 19–24.
  • Bonaccorsi, L.; Bruzzaniti, P.; Calabrese, L.; Proverbio, E. Organosilanes functionalization of alumino-silica zeolites for water adsorption applications. Microporous Mesoporous Mater. 2016, 234, 113–119. doi:10.1016/j.micromeso.2016.07.019.
  • Donkor, E. A.; Buamah, R. Defluorination of drinking water using surfactant modified zeolites. J. Sci. Technol. 2016, 36(1), 15–21.
  • Soni, R.; Modi, S. Removal of fluoride from drinking water using red mud. Int. J. Sci. Technol. Res. 2013, 2(10), 120–121.
  • Kameda, T.; Oba, J.; Yoshioka, T. Recyclable Mg-Al layered double hydroxides for fluoride removal: Kinetic and equilibrium studies. J. Hazard. Mater. 2015, 300, 475–482. doi:10.1016/j.jhazmat.2015.07.023.
  • Lee, C. H.; Tiwari, B.; Zhang, D.; Yap, Y. K. Water purification: Oil-water separation by nanotechnology and environmental concerns. Environ. Sci. Nano. 2017, 4(3), 514–525. doi:10.1039/C6EN00505E.
  • Zhao, D.; Chen, S.; Guo, C. X.; Zhao, Q.; Lu, X. Multi-functional forward osmosis draw solutes for seawater desalination. Chinese J. Chem. Eng. 2016, 24(1), 23–30. doi:10.1016/j.cjche.2015.06.018.
  • Kazemimoghadam, M. New nanopore zeolite membranes for water treatment. Desalination. 2010, 251(1-3), 176–180. doi:10.1016/j.desal.2009.11.036.
  • Li, L.; Dong, J.; Nenoff, T. M.; Lee, R. Desalination by reverse osmosis using MFI zeolite membranes. J. Memb. Sci. 2004, 243(1-2), 401–404. doi:10.1016/j.memsci.2004.06.045.
  • Daer, S.; Kharraz, J.; Giwa, A.; Hasan, S. W. Recent applications of nanomaterials in water desalination: A critical review and future opportunities. Des. 2015, 367, 37–48. doi:10.1016/j.desal.2015.03.030.
  • Mousa, S.; Mohsen, J. O. J. Desalination of brackish water by nanofiltration and reverse osmosis. Desalination. 2003, 157(1-3), 135–162.
  • De La, C. B. P.; Gillerman, L.; Gehr, R.; Oron, G. Nanotechnology for sustainable wastewater treatment and use for agricultural production: A comparative long-term study. Water Res. 2017, 110, 66–73. doi:10.1016/j.watres.2016.11.060.
  • Talaeipour, M.; Nouri, J.; Hassani, A. H.; Mahvi, A. H. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment. J. Environ. Heal. Sci. Eng. 2017, 15, 18. doi:10.1186/s40201-017-0279-x.
  • Mueller, N. C.; van der Bruggen, B.; Keuter, V.; Luis, P.; Melin, T.; Pronk W; Reisewitz, R.; Rickerby, D.; Rios, G. M.; Wennekes, W.; Nowack, B. Nanofiltration and nanostructured membranes: Should they be considered nanotechnology or not? J. Hazard Mater. 2012, 211–212, 275–280. doi:10.1016/j.jhazmat.2011.10.096.
  • Ong, C. S.; Goh, P. S.; Lau, W. J.; Misdan, N.; Ismail, A. F. Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: A review. Desalination. 2015, 393, 2–15. doi:10.1016/j.desal.2016.01.007.
  • Song, C.; Corry, B. Intrinsic ion selectivity of narrow hydrophobic pores. J. Phys. Chem. B. 2009, 113(21), 7642–7649. doi:10.1021/jp810102u.
  • Das, R.; Ali, M. E.; Hamid, S. B. A.; Ramakrishna, S.; Chowdhury, Z. Z. Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination. 2014, 336(1), 97–109. doi:10.1016/j.desal.2013.12.026.
  • Cohen-Tanugi, D.; Grossman, J. C. Water desalination across nanoporous graphene. Nano. Lett. 2012, 12(7), 3602–3608. doi:10.1021/nl3012853.
  • Yin, H.; Zhao, S.; Wan, J.; Tang, H.; Chang, L.; He, L.; Zhao, H.; Gao, Y.; Tang, Z. Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water. Adv. Mater. 2013, 25(43), 6270–6276. doi:10.1002/adma.201302223.
  • Tsai, Y. C.; Doong, R. Hierarchically ordered mesoporous carbons and silver nanoparticles as asymmetric electrodes for highly efficient capacitive deionization. Desalination. 2016, 398, 171–179. doi:10.1016/j.desal.2016.07.029.
  • Myint, M. T. Z.; Al-Harthi, S. H.; Dutta, J. Brackish water desalination by capacitive deionization using zinc oxide micro/nanostructures grafted on activated carbon cloth electrodes. Desalination. 2014, 344, 236–242. doi:10.1016/j.desal.2014.03.037.
  • Yasin, A. S.; Mohamed, H. O.; Mohamed, I. M. A.; Mousa, H. M.; Barakat, N. A. M. Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticles-doped graphene oxide as a novel and effective electrode. Sep. Purif. Technol. 2016, 171, 34–43. doi:10.1016/j.seppur.2016.07.014.
  • Dykstra, J. E.; Keesman, K. J.; Biesheuvel, P. M.; van der Wal, A. Theory of pH changes in water desalination by capacitive deionization. Water Res. 2017, 119, 178–186. doi:10.1016/j.watres.2017.04.039.
  • Guyes, E. N.; Shocron, A. N.; Simanovski, A.; Biesheuvel, P. M.; Suss, M. E. A one-dimensional model for water desalination by flow-through electrode capacitive deionization. Desalination. 2017, 415, 8–13. doi:10.1016/j.desal.2017.03.013.
  • Huang, Z. H.; Yang, Z.; Kang, F.; Inagaki, M. Carbon electrodes for capacitive deionization. J. Mater. Chem. A. 2017, 5(2), 470–496. doi:10.1039/C6TA06733F.
  • Zhang, S.; Lü, T.; Qi, D.; Cao, Z.; Zhang, D.; Zhao, H. Synthesis of quaternized chitosan-coated magnetic nanoparticles for oil-water separation. Mater. Lett. 2016, 191, 128–131. doi:10.1016/j.matlet.2016.12.092.
  • Collaborating Agencies. Water sustainability through nanotechnology: Nanoscale solutions for a global-scale challenge. Nanotechnology Signature Initiative. 2016, 1–12.
  • Liao, Y.; Wang, R.; Tian, M.; Qiu, C.; Fane, A. G. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J. Memb. Sci. 2013, 425–426, 30–39. doi:10.1016/j.memsci.2012.09.023.
  • Rand, E.; Periyakaruppan, A.; Tanaka, Z.; Zhang, D.; Michael, P.; Andrews, R. J.; Lee, K. H.; Chen, B.; Meyyappan, M. A carbon nanofiber based biosensor for simultaneous detection of dopamine and serotonin in the presence of ascorbic acid. Biosens. Bioelectron. 2014, 42, 434–438. doi:10.1016/j.bios.2012.10.080.
  • Biswas, P.; Wu, C. Y. Nanoparticles and the environment. J. Air. Waste. Manage. Assoc. 2005, 55(6), 708–746. doi:10.1080/10473289.2005.10464656.
  • Irfan, M.; Ahmad, T.; Moniruzzaman, M.; Abdullah, B. B. Size and stability modulation of ionic liquid functionalized gold nanoparticles synthesized using Elaeis guineensis (oil palm) kernel extract. Arab. J. Chem. 2017, January, 4–18.
  • Frost, M. S.; Dempsey, M. J.; Whitehead, D. E. The response of citrate functionalised gold and silver nanoparticles to the addition of heavy metal ions. Colloids Surf. A. Physicochem. Eng. Asp. 2017, 518, 15–24. doi:10.1016/j.colsurfa.2016.12.036.
  • Priyadarshini, E.; Pradhan, N. Chemical gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review. Sens. Actuators B. Chem. 2017, 238, 888–902. doi:10.1016/j.snb.2016.06.081.
  • Rastogi, P. K.; Yadav, D. K.; Pandey, S.; Ganesan, V.; Sonkar, P. K.; Gupta, R. Synthesis and characterization of gold nanoparticles incorporated bentonite clay for electrocatalytic sensing of arsenic(III). J. Chem. Sci. 2016, 128(3), 349–356. doi:10.1007/s12039-016-1039-7.
  • Ng, S. M. Sustainable alternative in environmental monitoring using carbon nanoparticles as optical probes. Trends Environ. Anal. Chem. 2014, 3, 36–42. doi:10.1016/j.teac.2014.08.001.
  • Petryayeva, E.; Krull, U. J. Localized surface plasmon resonance: nanostructures, bioassays and biosensing: A review. Anal. Chim. Acta. 2011, 706(1), 8–24. doi:10.1016/j.aca.2011.08.020.
  • Buduru, P.; Raja, B. C. S.; Naidu, N. V. S. Functionalization of silver nanoparticles with glutamine and histidine for simple and selective detection of Hg2+ ion in water samples. Sens. Actuators B. 2017, 244, 972–982. doi:10.1016/j.snb.2017.01.041.
  • Umar, A.; Al-Hajry, A.; Ahmad, R.; Ansari, S. G.; Al-Assiri, M. S.; Algarni, H. Fabrication and characterization of a highly sensitive hydroquinone chemical sensor based on iron-doped ZnO nanorods. Dalt. Trans. 2015, 44(48), 21081–21087. doi:10.1039/C5DT03364K.
  • Amal, R.; Low, G. Role of nanoparticles in photocatalysis. J. Nanoparticles Res. 1999, 1(January), 439–458.
  • Wang, W.; Huang, G.; Yu, J. C.; Wong, P. K. Advances in photocatalytic disinfection of bacteria: Development of photocatalysts and mechanisms. J. Environ. Sci. (China). 2015, 34, 232–247. doi:10.1016/j.jes.2015.05.003.
  • Shi, H.; Magaye, R.; Castranova, V.; Zhao, J. Titanium dioxide nanoparticles: A review of current toxicological data. Part. Fibre. Toxicol. 2013, 10(1), 15. doi:10.1186/1743-8977-10-15.
  • Montazerozohori, M.; Hoseinpour, A. Decolorization of P-dimethylaminobenzal-rhodanine under photocatalytic process by use of titanium dioxide nanoparticles at various buffer pHs. Environ. Eng. Manag. J. 2013. Available from: www.eemj.icpm.tuiasi.ro/pdfs/accepted/2_51_Montazerozohori_13.pdf. (Accessed on 10th October 2017).
  • Pradeep, T.; Anshup. Noble metal nanoparticles for water purification: A critical review. Thin Solid Films. 2009, 517(24), 6441–6478. doi:10.1016/j.tsf.2009.03.195.
  • Kaur, S.; Singh, V. Visible light induced sonophotocatalytic degradation of reactive red dye 198 using dye sensitized TiO2. Ultrason. Sonochem. 2007, 14(5), 531–537. doi:10.1016/j.ultsonch.2006.09.015.
  • Gora, S. L.; Andrews, S. A. Adsorption of natural organic matter and disinfection byproduct precursors from surface water on TiO2 nanoparticles: ph effects, isotherm modelling and implications for using TiO2 for drinking water treatment. Chemosphere. 2017, 174, 363–370. doi:10.1016/j.chemosphere.2017.01.125.
  • Prieto-Rodriguez, L.; Miralles-Cuevas, S.; Oller, I.; Agüera, A.; Puma, G. L.; Malato, S. Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. J. Hazard Mater. 2012, 211–212, 131–137. doi:10.1016/j.jhazmat.2011.09.008.
  • Murcia, J. J.; Ávila-Martínez, E. G.; Rojas, H.; Navío, J. A.; Hidalgo, M. C. Study of the E. coli elimination from urban wastewater over photocatalysts based on metallized TiO2. Appl. Catal. B. Environ. 2017, 200, 469–476. doi:10.1016/j.apcatb.2016.07.045.
  • Kamat, P. V.; Rebecca, H. A.; Nicolaescu, R. A. “Sense and shoot” approach for photocatalytic degradation of organic contaminants in water. J. Phys. Chem. B. 2002, 106(4), 788–794. doi:10.1021/jp013602t.
  • Zeng, X.; Wang, G.; Liu, Y.; Zhang, X. Graphene-based antimicrobial nanomaterials: Rational design and applications for water disinfection and microbial control. Environ. Sci. Nano. 2017, 12, 2239–2424.
  • Daneshvar, N.; Salari, D.; Khataee, A. R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. 2004, 162, 317–322.
  • Ameen, S.; ShaheerAkhtar, M.; Hyung-KeeSeo, S. Y.; ShikShin, H. Influence of Sn doping on ZnO nanostructures from nanoparticles to spindle shape and their photoelectrochemical properties for dye sensitized solar cells. Chem. Eng. J. 2012, 187, 351–356. doi:10.1016/j.cej.2012.01.097.
  • Forouzani, M.; Mardani, R. H.; Ziari, M.; Malekzadeh, A.; Biparva, P. Comparative study of oxidation of benzyl alcohol: Influence of Cu-doped metal cation on nano ZnO catalytic activity. Chem. Eng. J. 2015, 275, 220–226. doi:10.1016/j.cej.2015.04.032.
  • Salah, N.; Hameed, A.; Aslam, M.; Abdel-wahab, S. M.; Babkair, S. S.; Bahabri, F. Flow controlled fabrication of N doped ZnO thin films and estimation of their performance for sunlight photocatalytic decontamination of water. Chem. Eng. J. 2016, 291, 115–127. doi:10.1016/j.cej.2016.01.111.
  • Chen, W. S.; Huang, S. C. Sonophotocatalytic degradation of dinitrotoluenes and trinitrotoluene in industrial wastewater. Chem. Eng. J. 2011, 172(2-3), 944–951. doi:10.1016/j.cej.2011.07.006.
  • Cui, M.; Choi, J.; Lee, Y.; Ma, J.; Kim, D.; Choi, J.; Jang, M.; Khim, J. Significant enhancement of bromate removal in drinking water: Implications for the mechanism of sonocatalytic reduction. Chem. Eng. J. 2017, 317, 404–412. doi:10.1016/j.cej.2017.02.051.
  • Mukherjee, M.; De, S. Investigation of antifouling and disinfection potential of chitosan coated iron oxide-PAN hollow fiber membrane using gram-positive and gram-negative bacteria. Mater. Sci. Eng. C. 2017, 75, 133–148. doi:10.1016/j.msec.2017.02.039.
  • Kim, S. G.; Chun, J. H.; Chun, B. H.; Kim, S. H. Preparation, characterization and performance of poly(ayleneether sulfone)/modified silica nanocomposite reverse osmosis membrane for seawater desalination. Desalination. 2013, 325, 76–83. doi:10.1016/j.desal.2013.06.017.
  • Fritzmann, C.; Löwenberg, J.; Wintgens, T.; Melin, T. State-of-the-art of reverse osmosis desalination. Desalination. 2007, 216(1-3), 1–76. doi:10.1016/j.desal.2006.12.009.
  • Buonomenna, M. G. Smart composite membranes for advanced wastewater treatments. In Smart Composite Coatings and Membranes. Elsevier Ltd., Napoli, 2016, 371–419.
  • Shon, H. K.; Phuntsho, S.; Chaudhary, D. S.; Vigneswaran, S.; Cho, J. Nanofiltration for water and wastewater treatment: A mini review. Drink. Water Eng. Sci. 2013, 6(1), 47–53. doi:10.5194/dwes-6-47-2013.
  • Shahmansouri, A.; Bellona, C. Nanofiltration technology in water treatment and reuse: Applications and costs. Water Sci. Technol. 2015, 71(3), 309. doi:10.2166/wst.2015.015.
  • Orecki, A.; Tomaszewska, M.; Karakulski, K.; Morawski, A. W. Surface water treatment by the nanofiltration method. Desalination. 2004, 162(1-3), 47–54. doi:10.1016/S0011-9164(04)00026-8.
  • Futselaar, H.; Schonewille, H.; Dalfsen, H. V. Ultrafiltration technology for potable, process and waste water treatment. Conf. PERMEA, Tatranske Matliare, Slovakia, Sept 7–11. As Enschede. 2003, 1–12.
  • Yu, W.; Campos, L. C.; Graham, N. Application of pulsed UV-irradiation and pre-coagulation to control ultrafiltration membrane fouling in the treatment of micro-polluted surface water. Water Res. 2016, 107, 83–92. doi:10.1016/j.watres.2016.10.058.
  • Belibi, B. P.; Nguemtchouin, M. M. G.; Rivallin, M.; Ndi, N. J.; Sieliechi, J.; Cerneaux, S.; Ngassoum, M. B.; Cretin, M. Microfiltration ceramic membranes from local cameroonian clay applicable to water treatment. Ceram. Int. 2015, 41(2), 2752–2759. doi:10.1016/j.ceramint.2014.10.090.
  • Chollom, M. N.; Pikwa, K.; Rathilal, S.; Pillay, V. L. Fouling mitigation on a woven fibre microfiltration membrane for the treatment of raw water. South African J. Chem. Eng. 2017, 23, 1–9. doi:10.1016/j.sajce.2016.12.003.
  • Cay-Durgun, P.; McCloskey, C.; Konecny, J.; Khosravi, A.; Lind, M. L. Evaluation of thin film nanocomposite reverse osmosis membranes for long-term brackish water desalination performance. Desalination. 2017, 404, 304–312. doi:10.1016/j.desal.2016.10.014.
  • Amy, G.; Ghaffour, N.; Li, Z.; Francis, L.; Linares, R. V.; Missimer, T.; Lattemann, S. Membrane-based seawater desalination: Present and future prospects. Desalination. 2017, 401, 16–21. doi:10.1016/j.desal.2016.10.002.
  • Wenten, I. G.; Khoiruddin. Reverse osmosis applications: prospect and challenges. Desalination. 2016, 391, 112–125. doi:10.1016/j.desal.2015.12.011.
  • Bell, E. A.; Poynor, T. E.; Newhart, K. B.; Regnery, J.; Coday, B. D.; Cath, T. Y. Produced water treatment using forward osmosis membranes: evaluation of extended-time performance and fouling. J. Memb. Sci. 2017, 525(December 2015), 77–88. doi:10.1016/j.memsci.2016.10.032.
  • Meng, F.; Zhang, S.; Oh, Y.; Zhou, Z.; Shin, H. S.; Chae, S. R. Fouling in membrane bioreactors: An updated review. Water Res. 2017, 114, 151–180. doi:10.1016/j.watres.2017.02.006.
  • Zhang, B.; Song, X.; Nghiem, L. D.; Li, G.; Luo, W. Osmotic membrane bioreactors for wastewater reuse: performance comparison between cellulose triacetate and polyamide thin film composite membranes. J. Memb. Sci. 2017, 539, 383–391. doi:10.1016/j.memsci.2017.06.026.
  • Iskander, S. M.; Zou, S.; Brazil, B.; Novak, J. T.; He, Z. Energy consumption by forward osmosis treatment of landfill leachate for water recovery. Waste Manag. 2017, 63, 284–291. doi:10.1016/j.wasman.2017.03.026.
  • Ortega, A.; Oliva, I.; Contreras, K. E.; González, I.; Cruz-Díaz, M. R.; Rivero, E. P. Arsenic removal from water by hybrid electro-regenerated anion exchange resin/electrodialysis process. Sep. Purif. Technol. 2017, 184, 319–326. doi:10.1016/j.seppur.2017.04.050.
  • Bunani, S.; Kabay, N.; Bunani, S.; Arda, M.; Yoshizuka, K.; Nishihama, S.; Bunani, S. Effect of process conditions on recovery of lithium and boron from water using bipolar membrane electrodialysis (BMED). Desalination. 2017, 416(March), 10–15. doi:10.1016/j.desal.2017.04.017.
  • Manohar, M.; Das, A. K.; Shahi, V. K. Alternative preparative route for efficient and stable anion-exchange membrane for water desalination by electrodialysis. Desalination. 2017, 413, 101–108. doi:10.1016/j.desal.2017.03.015.
  • Cui, T.; Zhang, Y.; Han, W.; Li, J.; Sun, X.; Shen, J.; Wang, L. Advanced treatment of triazole fungicides discharged water in pilot scale by integrated system: enhanced electrochemical oxidation, upflow biological aerated filter and electrodialysis. Chem. Eng. J. 2017, 315, 335–344. doi:10.1016/j.cej.2017.01.039.
  • Kezia, K.; Lee, J.; Weeks, M.; Kentish, S. Direct contact membrane distillation for the concentration of saline dairy effluent. Water Res. 2015, 81, 167–177. doi:10.1016/j.watres.2015.05.042.
  • Van der Bruggen, B.; Pinoy, L.; De Sitter, K.; Eykens, L.; Dotremont, C. 12-Integrated systems involving membrane distillation and applications. In Pervaporation, Vapour Permeation and Membrane Distillation. Principles and Applications. Woodhead Publishing Series in Energy: Cambridge, UK, 2015, 361–383.
  • Orellana, S. L.; Torres-Gallegos, C.; Araya-Hermosilla, R.; Oyarzun-Ampuero, F.; Moreno-Villoslada, I. Association efficiency of three ionic forms of oxytetracycline to cationic and anionic oil-in-water nanoemulsions analyzed by diafiltration. J. Pharm. Sci. 2015, 104(3), 1141–1152. doi:10.1002/jps.24255.
  • Srimuk, P.; Zeiger, M.; Jäckel, N.; Tolosa, A.; Krüner, B.; Fleischmann, S.; Grobelsek, I.; Aslan, M.; Shvartsev, B.; Suss, M. E.; Presser, V. Enhanced performance stability of carbon/titania hybrid electrodes during capacitive deionization of oxygen saturated saline water. Electrochim. Acta. 2017, 224, 314–328. doi:10.1016/j.electacta.2016.12.060.
  • Lee, D.; Lee, J. Y.; Kim, Y.; Moon, S. H. Investigation of the performance determinants in the treatment of arsenic-contaminated water by continuous electrodeionization. Sep. Purif. Technol. 2017, 179, 381–392. doi:10.1016/j.seppur.2017.02.025.
  • Ye, C. C.; Zhao, F. Y.; Wu, J. K.; Weng, X. D.; Zheng, P. Y.; Mi, Y. F.; An, Q. F.; Gao, C. J. Sulfated polyelectrolyte complex nanoparticles structured nanofiltration membrane for dye desalination. Chem. Eng. J. 2017, 307, 526–536. doi:10.1016/j.cej.2016.08.122.
  • Krzeminski, P.; Leverette, L.; Malamis, S.; Katsou, E. Membrane bioreactors—A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. J. Memb. Sci. 2016, 527, 207–227. doi:10.1016/j.memsci.2016.12.010.
  • Richards, H. L.; Baker, P. G. L.; Iwuoha, E. Metal nanoparticle modified polysulfone membranes for use in wastewater treatment: A critical review. J. Surf. Eng. Mater. Adv. Technol. 2012, 2(3), 183–193.
  • Ridgway, H. F.; Orbell, J.; Gray, S. Molecular simulations of polyamide membrane materials used in desalination and water reuse applications: recent developments and future prospects. J. Memb. Sci. 2017, 524(November 2016), 436–448. doi:10.1016/j.memsci.2016.11.061.
  • Oprčkal, P.; Mladenovič, A.; Vidmar, J.; Mauko, P. A.; Milačič, R.; Ščančar, J. Critical evaluation of the use of different nanoscale zero-valent iron particles for the $of effluent water from a small biological wastewater treatment plant. Chem. Eng. J. 2017, 321, 20–30. doi:10.1016/j.cej.2017.03.104.
  • Mohammed, L.; Gomaa, H. G.; Ragab, D.; Zhu, J. Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology. 2016, 30, 1–14. doi:10.1016/j.partic.2016.06.001.
  • Balta, S.; Sotto, A.; Luis, P.; Benea, L.; Van der Bruggen, B.; Kim, J. A new outlook on membrane enhancement with nanoparticles: The alternative of ZnO. J. Memb. Sci. 2012, 389, 155–161. doi:10.1016/j.memsci.2011.10.025.
  • Sarkar, S.; Sarkar, A.; Bhattacharjee, C. Nanotechnology-based membrane-separation process for drinking water purification. Water Purif. 2017, 355–389. doi:10.1016/B978-0-12-804300-4.00010-1.
  • Pi, J. K.; Yang, H. C.; Wan, L. S.; Wu, J.; Xu, Z. K. Polypropylene microfiltration membranes modified with TiO2 nanoparticles for surface wettability and antifouling property. J. Memb. Sci. 2016, 500, 8–15. doi:10.1016/j.memsci.2015.11.014.
  • Razmjou, A.; Mansouri, J.; Chen, V. The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of pes ultrafiltration membranes. J. Memb. Sci. 2011, 378(1-2), 73–84. doi:10.1016/j.memsci.2010.10.019.
  • Yang, Z.; Yin, J.; Deng, B. Enhancing water flux of thin-film nanocomposite (TFN) membrane by incorporation of bimodal silica nanoparticles. Aims. Environ. Sci. 2016, 3(2), 185–198. doi:10.3934/environsci.2016.2.185.
  • Moghadasi, M.; Mortaheb, H. R. Incorporating functionalized silica nanoparticles in polyethersulfone-based anion exchange nanocomposite membranes. J. Appl. Polym. Sci. 2017, 134(11), 44596. doi:10.1002/app.44596.
  • Duan, W.; Ronen, A.; Walker, S.; Jassby, D. Polyaniline-coated carbon nanotube ultrafiltration membranes: enhanced anodic stability for in situ cleaning and electro-oxidation processes. ACS. Appl. Mater. Interfaces. 2016, 8(34), 22574–22584. doi:10.1021/acsami.6b07196.
  • Sianipar, M.; Kim, S. H.; Khoiruddin, K.; Iskandar, F.; Wenten, I. G. Functionalized carbon nanotube (CNT) membrane: Progress and challenges. RSC. Adv. 2017, 7(81), 51175–51198. doi:10.1039/C7RA08570B.
  • Tambe, P. B. B. Wastewater treatment using nanoparticles. J. Adv. Chem. Eng. 2015, 5(3), 131.
  • Yunessnia, L. A.; Akbari, A. Membrane capsules with hierarchical Mg(OH)2 nanostructures as novel adsorbents for dyeing wastewater treatment in carpet industries. J. Taiwan Inst. Chem. Eng. 2017, 70, 391–400. doi:10.1016/j.jtice.2016.10.041.
  • Iavicoli, I.; Leso, V.; Beezhold, D. H.; Shvedova, A. A. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicol. Appl Pharmacol. 2017, 329, 96–111. doi:10.1016/j.taap.2017.05.025.
  • Yao, D.; Chen, Z.; Zhao, K.; Yang, Q.; Zhang, W. Limitation and challenge faced to the researches on environmental risk of nanotechnology. Procedia Environ. Sci. 2013, 18, 149–156. doi:10.1016/j.proenv.2013.04.020.
  • Scown, T. M.; van Aerle, R.; Tyler, C. R. Do engineered nanoparticles pose a significant threat to the aquatic environment?: A review. Crit. Rev. Toxicol. 2010, 40(7), 653–670. doi:10.3109/10408444.2010.494174.
  • Sharma, V. K. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment?: A review. J. Environ. Sci. Heal. Part A. 2009, 44(14), 1485–1495. doi:10.1080/10934520903263231.
  • Peijnenburg, W. J. G. M.; Baalousha, M.; Chen, J.; Chaudry, Q.; Von der kammer, F.; Kuhlbusch, T. A. J.; Lead, J.; Nickel, C.; Quik, J. T. K.; Renker, M.; et al. A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment. Crit. Rev. Environ. Sci. Technol. 2015, 45(19), 2084–2134. doi:10.1080/10643389.2015.1010430.
  • Zheng, X.; Chen, Y.; Wu, R. Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge. Environ. Sci. Technol. 2011, 45(17), 7284–7290. doi:10.1021/es2008598.
  • Shah, S. N. A.; Shah, Z.; Hussain, M.; Khan, M. Hazardous effects of titanium dioxide nanoparticles in ecosystem. Bioinorg. Chem. Appl. 2017, 2017, 1–12. doi:10.1155/2017/4101735.
  • Kellogg, J. S. Are Nanoparticles a Threat to Our Drinking Water? Creative Commons Attribution, Johns Hopkins Water Institute, US, 2012. Available from: http://water.jhu.edu/index.php/magazine/are-nanoparticles-a-threat-to-our-drinking-water/. (Accessed on 20th June 2017).
  • Cornelis, G.; Hund-Rinke, K.; Kuhlbusch, T.; van den Brink, N.; Nickel, C. Fate and bioavailability of engineered nanoparticles in soils: A review. Crit. Rev. Environ. Sci. Technol. 2014, 44(24), 2720–2764. doi:10.1080/10643389.2013.829767.
  • Buzea, C.; Pacheco I. I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007, 2(4), MR17–MR71. doi:10.1116/1.2815690.
  • Hofmann-Amtenbrink, M.; Grainger, D. W.; Hofmann, H. Nanoparticles in medicine: Current challenges facing inorganic nanoparticle toxicity assessments and standardizations. Nanomedicine Nanotechnology Biol. Med. 2015, 11(7), 1689–1694. doi:10.1016/j.nano.2015.05.005.
  • Handford, C. E.; Dean, M.; Henchion, M.; Spence, M.; Elliott, C. T.; Campbell, K. Implications of nanotechnology for the agri-food industry: opportunities, benefits and risks. Trends Food. Sci. Technol. 2014, 40(2), 226–241. doi:10.1016/j.tifs.2014.09.007.
  • Lue, J. T. Physical properties of nanomaterials. In Encyclopedia of Nanoscience and Nanotechnology. 2007, 1–46.
  • Morsi, R. E.; Alsabagh, A. M.; Nasr, S. A.; Zaki, M. M. Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: antimicrobial characteristics. Int. J. Biol. Macromol. 2017, 97, 264–269. doi:10.1016/j.ijbiomac.2017.01.032.
  • Rahman, P. M.; Muraleedaran, K.; Mujeeb, V. M. A. Applications of chitosan powder with in situ synthesized nano ZnO particles as an antimicrobial agent. Int. J. Biol. Macromol. 2015, 77, 266–272. doi:10.1016/j.ijbiomac.2015.03.058.
  • Yang, R.; Li, H.; Huang M.; Yang, H.; Li, A. A review on chitosan-based flocculants and their applications in water treatment. Water Res. 2016, 95(2015), 59–89. doi:10.1016/j.watres.2016.02.068.
  • Markeb, A. A.; Alonso, A.; Sánchez, A.; Font, X. Adsorption process of fluoride from drinking water with magnetic core-shell Ce-Ti @ Fe3O4 and Ce-Ti oxide nanoparticles. Sci. Total Environ. 2017, 598, 949–958. doi:10.1016/j.scitotenv.2017.04.191.
  • Pei, C. C.; Kin, S. L. K.; Leung, W. W. F. Titanium-zinc-bismuth oxides-graphene composite nanofibers as high-performance photocatalyst for gas purification. Sep. Purif. Technol. 2017, 184, 205–212. doi:10.1016/j.seppur.2017.04.016.
  • Davis, J.; Wang, A.; Shtakin, J. Nanomaterial case studies: nanoscale titanium dioxide in water treatment and in topical sunscreen. US. EPA. Res. Triangle Park. 2010, (November), 13–14
  • Xu, Y.; Li, C.; Zhu, X.; Huang, W. E.; Zhang, D. Application of magnetic nanoparticles in drinking water purification. Environ. Eng. Manag. J. 2014, 13(8), 2023–2029.
  • BelBruno, J. Nanomaterials in sensors. Nanomaterials. 2013, 3(4), 572–573. doi:10.3390/nano3040572.
  • Barlokov, D. Natural zeolites in the water treatment process. Slovak. J. Civ. Eng. 2008, 2, 8–12.
  • Dong, H.; Zhao, L.; Zhang, L.; Chen, H.; Gao, C.; Winston, H. W. S. High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination. J. Memb. Sci. 2015, 476, 373–383. doi:10.1016/j.memsci.2014.11.054.
  • Liu, J.; Shi, G.; Guo, P.; Yang, J.; Fang, H. Blockage of water flow in carbon nanotubes by ions due to interactions between cations and aromatic rings. Phys. Rev. Lett. 2015, 115(16), 164502. doi:10.1103/PhysRevLett.115.164502.
  • Tu, Q.; Yang, Q.; Wang, H.; Li, S. Rotating carbon nanotube membrane filter for water desalination. Sci. Rep. 2016, 6(1), 26183. doi:10.1038/srep26183.
  • Llobet, E. Carbon nanomaterials for environmental monitoring sensors. 14th. Int. Meet Chem. Sens. 2012, 384–386.
  • Meyyappan, M. Carbon nanotube-based chemical sensors. Small. 2016, 12(16), 2118–2129. doi:10.1002/smll.201502555.
  • Yeow, J. T. W.; Wang, Y. A review of carbon nanotubes-based gas sensors. J. Sensors. 2009, 2009, 1–21.
  • Peng, S.; O'Keeffe, J.; Wei, C.; Cho, K. Carbon nanotube chemical and mechanical sensors. Proc. 3rd. Int. Work. Struct. Heal. Monit. 2001, 1–8.
  • Wold, A. Photocatalytic properties of titanium dioxide (TiO2). Chem. Mater. 1993, 5(3), 280–283. doi:10.1021/cm00027a008.
  • Verhovsek, P. B. Titanium disoxide nanoparticels as a highly active photocatalystic material. 2017, 4–10. Available from: www.cinkarna.si/en/files/…/uf_tio_as_highly_active_photocatalytic_material.pdf. (Accessed on 12th October 2017)
  • Khan, M. M.; Adil, S. F.; Al-Mayouf, A. Metal oxides as photocatalysts. J. Saudi. Chem. Soc. 2015, 19(5), 462–464. doi:10.1016/j.jscs.2015.04.003.
  • Arora, A. K.; Jaswal, V. S.; Singh, K.; Singh, R. Applications of metal/mixed metal oxides as photocatalyst: A review. Orient. J. Chem. 2016, 32(4), 2035–2042. doi:10.13005/ojc/320430.
  • Ali, A.; Muhammad, A. Doped metal oxide (ZnO) and photocatalysis: A review. J. Pakistan. Inst. Chem. Eng. 2012, 40(1), 11–19.
  • Ma, L.; Dong, X.; Chen, M.; Zhu, L.; Wang, C.; Yang, F. Fabrication and water treatment application of carbon nanotubes (CNTs)-based composite membranes: A review. Membranes. (Basel) 2017, 7(16), 1–21.
  • Rashid, M. H. O.; Ralph, S. F. Carbon nanotube membranes: Synthesis, properties, and future filtration applications. Nanomater. 2017, 7(5), 99. doi:10.3390/nano7050099.
  • Lee, J.; Jeong, S.; Liu, Z. Progress and challenges of carbon nanotube membrane in water treatment. Crit. Rev. Environ. Sci. Technol. 2016, 46(11-12), 999–1046. doi:10.1080/10643389.2016.1191894.
  • Lee, B.; Baek, Y.; Lee, M.; Jeong D. H.; Lee, H. H.; Yoon, J.; Kim, Y. H. A Carbon Nanotube Wall Membrane for Water Treatment. Nat. Commun. 2015, 6, 1–7.
  • Papp, I. Z. Investigation of titanium-dioxide coatings on membrane filtration properties. Stud. UBB. Chem. 2017, LXII(1), 249–259.
  • Xia, Y.; Gao, G.; Li, Y. Preparation and properties of nanometer titanium dioxide/silk fibroin blend membrane. J. Biomed. Mater. Res. Part B. Appl. Biomater. 2009, 90B(2), 653–638. doi:10.1002/jbm.b.31331.
  • Mcleary, E. E.; Jansen, J. C.; Kapteijn, F. Zeolite Based films, membranes and membrane reactors: Progress and prospects. Micropores. Mesoporous. Mater. 2006, 90, 198–220. doi:10.1016/j.micromeso.2005.10.050.
  • Daramola, M. O.; Aransiola, E. F.; Ojumu, T. V. Potential applications of zeolite membranes in reaction coupling separation processes: Review. Materials. (Basel) 2012, 5, 2101–2136. doi:10.3390/ma5112101.
  • Domoroshchina, E.; Kravchenko, G.; Kuz'micheva, G. Nanocomposites of zeolite-titanium (IV) oxides: Preparation, characterization, adsorption, photocatalytic and bactericidal properties. J. Cryst. Growth. 2017, 468, 199–203. doi:10.1016/j.jcrysgro.2017.02.001.
  • Glen, B. R.; Tuccillo, M. E; Sandvig, A.; Pelaez, M.; Han, C.; Dionysiou, D. D. Nanomaterials: Removal processes and beneficial applications in treatment. J. Awwa. 2013, 103(12), 45–46.
  • Metch, J. W.; Ma, Y.; Pruden, A.; Vikesland, P. J. Enhanced disinfection by-product formation due to nanoparticles in wastewater treatment plant effluents. Environ. Sci. Water Res. Technol. 2015, 1(6), 823–831. doi:10.1039/C5EW00114E.
  • Marambio-Jones, C.; Hoek, E. M. V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanoparticle Res. 2010, 12(5), 1531–1551. doi:10.1007/s11051-010-9900-y.
  • Shan, S. J.; Zhao, Y.; Tang, H.; Cui, F. Y. A Mini-review of carbonaceous nanomaterials for removal of contaminants from wastewater. Earth Environ. Sci. 2017, 68, 1–7.
  • Suleiman, M.; Mousa, M.; Hussein, A. I. A. Wastewater disinfection by synthesized copper oxide nanoparticles stabilized with surfactant. J. Mater. Environ. Sci. 2015, 6(7), 1924–1937.
  • Xu, P.; Zeng, G. M.; Huang, D. L.; Feng, C. L.; Hu, S.; Zhao, M. H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G. X.; Liu, Z. F. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total. Environ. 2012, 424, 1–10. doi:10.1016/j.scitotenv.2012.02.023.
  • Huang, Y.; Keller, A. A. Magnetic nanoparticle adsorbents for emerging organic contaminants. ACS. Sustain. Chem. Eng. 2013, 1(7), 731–736. doi:10.1021/sc400047q.
  • Shaolin, L.; Wang, W.; Liang, F.; Zhang, W. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. J. Hazard. Mater. 2017, 322, 163–171. doi:10.1016/j.jhazmat.2016.01.032.
  • Gehrke, I.; Geiser, A.; Somborn-Schulz, A. Innovations in nanotechnology for water treatment. Nanotechnol. Sci. Appl. 2015, 8, 1–17. doi:10.2147/NSA.S43773.
  • Anjum, M.; Miandad, R.; Waqas, M.; Gehany, F.; Barakat, M. A. Remediation of wastewater using various nano-materials. Arab. J. Chem. 2016, in press, 1–15. doi:10.1016/j.arabjc.2016.10.004.
  • Sheet, I.; Kabbani, A.; Holail, H. Removal of heavy metals using nanostructured graphite oxide, silica nanoparticles and silica/graphite oxide composite. Energy Procedia. 2014, 50, 130–138. doi:10.1016/j.egypro.2014.06.016.
  • An, S.; Joshi, B. N.; Lee, J. G.; Lee, M. W.; Kim, Y. I.; Kim, M. W.; Jo, H. S.; Yoon, S. S. A comprehensive review on wettability, desalination, and purification using graphene-based materials at water interfaces. Catal. Today. 2017, 295(December 2016), 14–25. doi:10.1016/j.cattod.2017.04.027.
  • Padungthon, S. Development of Hybrid Polymeric/Inorganic Ion Exchanger: Preparation, Characterization and Environmental Applications. Lehigh Preserve.; Lehigh University, 2013, 62–84.
  • Shilina, A. S.; Bakhtin, V. D.; Burukhin, S. B.; Askhadullin, S. R. Sorption of cations of heavy metals and radionuclides from the aqueous media by new synthetic zeolite-like sorbent. Nucl. Energy.Technol. 2017, 3, 249–254. doi:10.1016/j.nucet.2017.10.001.
  • Ahmed, T.; Imdad, S.; Yaldram, K.; Butt, N. M.; Pervez, A. Emerging nanotechnology-based methods for water purification: A review. Desalin. Water Treat. 2014, 52(22-24), 4089–4101. doi:10.1080/19443994.2013.801789.
  • March, G.; Nguyen, T. D.; Piro, B. Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors. 2015, 5(2), 241–275. doi:10.3390/bios5020241.
  • Bhakta, J. N.; Jana, B. B.; Lahiri, S.; Mandal, S. K.; Pradhan, M. K. Impact of nanomaterial in environmental remediation and toxicity. Review article. Int. J. Env. Tech. Sci. 2016, 2, 38–52.
  • Govindhan, M.; Adhikari, B. R.; Chen, A. Nanomaterials-based electrochemical detection of chemical contaminants. RSC. Adv. 2014, 4(109), 63741–63760. doi:10.1039/C4RA10399H.
  • Li, M.; Gou, H.; Al-Ogaidi, I.; Wu, N. Nanostructured sensors for detection of heavy metals: A review. ACS. Sustain. Chem. Eng. 2013, 1(7), 713–723. doi:10.1021/sc400019a.
  • Tungittiplakorn, W.; And, C. C.; Lion, L. W. Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Env. Sci. Technol. 2005, 39(5), 1354–1358. doi:10.1021/es049031a.
  • Tukur, S. A. Y.; Nor, A. H. R. Linear sweep anodic stripping voltammetry: Determination of chromium (VI) using synthesized gold nanoparticles modified screen-printed electrode. J. Chem. Sci. 2015, 127(6), 1075–1081. doi:10.1007/s12039-015-0864-4.
  • Annadhasan, M.; Muthukumarasamyvel, T.; Sankar, B. V. R.; Rajendiran, N. Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+ and Mn2+ in aqueous medium. ACS. Sustain. Chem. Eng. 2014, 2(4), 887–896. doi:10.1021/sc400500z.
  • Prieto-Rodriguez, L.; Miralles-Cuevas, S.; Oller, I.; Agüera, A.; Puma, G. L.; Malato, S. Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. J. Hazard. Mater. 2012, 211–212, 131–137. doi:10.1016/j.jhazmat.2011.09.008.
  • Lijuan, J.; Yajun, W.; Changgen, F. Application of photocatalytic technology in environmental safety. Procedia Eng. 2012, 45, 993–997. doi:10.1016/j.proeng.2012.08.271.
  • Hussein, F. H.; Abass, T. A. Photocatalytic treatment of textile industrial wastewater. Int. J. Chem. Sci. 2010, 8(3), 1353–1364.
  • Das, R. Application photocatalysis for treatment of industrial waste water: A short review. Open Acess. Libr. J. 2014, 1(e713), 1–19.
  • Lazar, M. A.; Varghese, S.; Nair, S. S. Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts. 2012, 2, 572–601. doi:10.3390/catal2040572.
  • Mondal, K.; Sharma, A. Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials: A mini-review. Indian Inst. Tecnol. 2016, (January), 36–72.
  • Binas, V.; Venieri, D.; Kotzias, D.; Kiriakidis, G. Modified TiO2 based photocatalysts for improved air and health quality. J. Mater. 2017, 3(1), 3–16.
  • Zhao, D.; Wu, X. Nanoparticles assembled SnO2 nanosheet photocatalysts for wastewater purification. Mater. Lett. 2018, 210, 354–357. doi:10.1016/j.matlet.2017.09.068.
  • Lim, S. K.; Goh, K.; Bae, T. H.; Wang, R. Polymer-based membranes for solvent-resistant nanofiltration: A review. Chin. J. Chem. Eng. 2017, 25, 1653–1675. doi:10.1016/j.cjche.2017.05.009.
  • Dadvar, E.; Kalantary, R. R.; Ahmad, P. H.; Peyravi, M. Efficiency of polymeric membrane graphene oxide-TiO2 for removal of azo dye. J. Chem. 2017, 2017, 1–13. doi:10.1155/2017/6217987.
  • Theron, J.; Walker, J. A.; Cloete, T. E. Nanotechnology and water treatment: Applications and emerging opportunities. Crit. Rev. Microbiol. 2008, 34(1), 43–69. doi:10.1080/10408410701710442.
  • Hestekin, J. A.; Bachas, L. G.; Bhattacharyya, D. Poly(aminoacid)-functionalized cellulosic membranes: Metal sorption mechanisms and results. Ind. Eng. Chem. Res. 2001, 40(12), 2668–2678. doi:10.1021/ie000572s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.