Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 53, 2018 - Issue 6
200
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

27-Deoxyactein prevents 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cellular damage in MC3T3-E1 osteoblastic cells

, , , , , , & show all
Pages 561-570 | Received 23 Oct 2017, Accepted 29 Dec 2017, Published online: 24 Jan 2018

References

  • Dere, E.; Lee, A.W.; Burgoon, L.D.; Zacharewski, T.R. Differences in TCDD-elicited gene expression profiles in human HepG2, mouse Hepa1c1c7 and rat H4IIE hepatoma cells. BMC Genom. 2011, 12, 193–199. Doi: 10.1186/1471-2164-12-193.
  • Fiedler, H. Sources of PCDD/PCDF and impact on the environment. Chemosphere 1996, 32, 55–54. Doi: 10.1016/0045-6535(95)00228-6.
  • Gasiewicz, T.A. Exposure to dioxin and dioxin-like compounds as a potential factor in developmental disabilities. Ment. Retard. Dev. Disabil. Res. Rev. 1997, 3, 230–238. Doi: 10.1002/(SICI)1098-2779(1997)3:3%3c230::AID-MRDD3%3e3.0.CO;2-T.
  • Pohjanvirta, R.; Tuomisto, J. Short-term toxicity of 2,3,7,8-Tetrachlorodibenzo-P-dioxin in laboratory animals: Effects, mechanisms, and animal models. Pharmacol. Rev. 1994, 46, 483–549.
  • Fries, G.H. A review of the significance of animal food products as potential pathways of human exposure to dioxins. J. Anim. Sci. 1995, 73, 1639–1650. Doi: 10.2527/1995.7361639x.
  • Lensu, S.; Tiittanen, P.; Linden, J.; Tuomisto, J.; Pohjanvirta, R. Effect of single exposure to 2,3,7,8 tetrachlorodibenzo-P-dioxin (TCDD) on macro and microstructures of feeding and drinking in two differently TCDD-sensitive rat strains. Pharmacol. Biochem. Behav. 2011, 99, 487–499. Doi: 10.1016/j.pbb.2011.04.022.
  • Olson, J.R. Pharmacokinetics of dioxin and related chemicals. In Dioxins and Health; Schecter, A., Ed; Plenum Press: New York, 1994; 163–167.
  • Van den Berg, M.; Birnbaum, L.; Bosveld, A.T.C.; Brunström, B.; Cook, P.; Feeley, M.; Giesy, J.P.; Hanberg, A.; Hasegawa, R.; Kennedy, S. W., et al. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ. Health Perspect. 1998, 106, 775–792. Doi: 10.1289/ehp.98106775.
  • Fujii-Kuriyama, Y.; Mimura, J. Molecular mechanisms of AhR functions in the regulation of cytochrome P450 genes. Biochem. Biophys. Res. Commun. 2005, 338, 311–317. Doi: 10.1016/j.bbrc.2005.08.162.
  • Schmidt, J.V.; Bradfield, C.A. Ah receptor signaling pathways. Annu. Rev. Cell Dev. Biol. 1996, 12, 55–89. Doi: 10.1146/annurev.cellbio.12.1.55.
  • Nebert, D.W.; Roe, A.L.; Dieter, M.Z.; Solis, W.A.; Yang, Y.; Dalton, T.P. Role of the aromatic hydrocarbon receptor and [Ah] genebattery in the oxidative stress response, cell cycle control, and apoptosis. Biochem. Pharmacol. 2000, 59, 65–85. Doi: 10.1016/S0006-2952(99)00310-X.
  • Alsharif, N.Z.; Hassoun, E.A. Protective effects of vitamin A and vitamin E succinate against 2,3,7,8-tetrachlorodibenzo-P-dioxin (TCDD)-induced body wasting, hepatomegaly, thymic atrophy, production of reactive oxygen species and DNA damage in C57Bl/6J mice. Basic Clin. Pharmacol. Toxicol. 2004, 95, 131–138. Doi: 10.1111/j.1742-7843.2004.950305.x.
  • Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev. 2009, 2, 270–278. Doi: 10.4161/oxim.2.5.9498.
  • Chen, S.C.; Liao, T.L.; Wei, Y.H.; Tzeng, C.R.; Kao, S.H. Endocrine disruptor, dioxin (TCDD)-induced mitochondrial dysfunction and apoptosis in human trophoblast-like JAR cells. Mol. Hum. Reprod. 2010, 16, 361–372. Doi: 10.1093/molehr/gaq004.
  • Yoshimitsu, H.; Nishida, M.; Nohara, T. Three new 15,16-seco-cycloartane glycosides from Cimicifuga rhizome. Chem. Pharm. Bull. (Tokyo) 2007, 55, 789–792. Doi: 10.1248/cpb.55.789.
  • Wende, K.; Mugge, C.; Thurow, K.; Schopke, T.; Lindequist, U. Actaeaepoxide 3-O-beta-D-xylopyranoside, a new cycloartane glycoside from the rhizomes of Actaea Racemosa (Cimicifuga racemosa). J. Nat. Prod. 2001, 64, 986–989. Doi: 10.1021/np000619e.
  • Kruse, S.; Lohning, A.; Pauli, G.; Wintergoff, H.; Nahrstedt, A. Fukiic and piscidic acid esters from the rhizome of Cimicifuga racemosa and the in vitro estrogenic activity of fukinolic acid. Planta Med. 1999, 65, 763–764. Doi: 10.1055/s-2006-960862.
  • Choi, E.M. 27-Deoxyactein stimulates osteoblast function and inhibits bone-resorbing mediators in MC3T3-E1 cells. J. Appl. Toxicol. 2013, 33, 190–195. Doi: 10.1002/jat.1733.
  • Baracca, A.; Sgarbi, G.; Solaini, G.; Lenaz, G. Rhodamine 123 as a probe of mitochondrial membrane potential: Evaluation of proton flux through F(0) during ATP synthesis. Biochim. Biophys. Acta 2003, 1606, 137–146. Doi: 10.1016/S0005-2728(03)00110-5.
  • Wang, H.; Meng, Q.H.; Chang, T.; Wu, L. Fructose-induced peroxynitrite production is mediated by methylglyoxal in vascular smooth muscle cells. Life Sci. 2006, 79, 2448–2454. doi:10.1016/j.lfs.2006.08.009.
  • Kleinerman, E.S.; Lachman, L.B.; Knowles, R.D.; Snyderman, R.; Cianciolo, G.J. A synthetic peptide homologous to the envelope proteins of retroviruses inhibits monocyte-mediated killing by inactivating interleukin 1. J. Immunol. 1987, 139, 2329–2337.
  • Choi, E.M.; Suh, K.S.; Jung, W.W.; Park, S.Y.; Chin, S.O.; Rhee, S.Y.; Kim Pak, Y.; Chon, S. Actein alleviates 2,3,7,8-tetrachlorodibenzo-P-dioxin-mediated cellular dysfunction in osteoblastic MC3T3-E1 cells. Environ. Toxicol. 2017, 32, 2455–2470. Doi: 10.1002/tox.22459.
  • Fiorito, F.; Ciarcia, R.; Granato, G.E.; Marfe, G.; Iovane, V.; Florio, S.; De Martino, L.; Pagnini, U. 2,3,7,8-Tetrachlorodibenzo-P-dioxin induced autophagy in a bovine kidney cell line. Toxicology 2011, 290, 258–270. Doi: 10.1016/j.tox.2011.10.004.
  • Zhao, J.; Tang, C.; Nie, X.; Xi, H.; Jiang, S.; Jiang, J.; Liu, S.; Liu, X.; Liang, L.; Wan, C., et al. Autophagy potentially protects against 2,3,7,8-tetrachlorodibenzo-P-dioxin induced apoptosis in SH-SY5Y cells. Environ. Toxicol. 2016, 31, 1068–1079. Doi: 10.1002/tox.22116.
  • Rosenfeldt, M.T.; Ryan, K.M. The multiple roles of autophagy in cancer. Carcinogenesis 2011, 32, 955–963. Doi: 10.1093/carcin/bgr031.
  • Kroemer, G.; Levine, B. Autophagic cell death: The story of a misnomer. Nat. Rev. Mol. Cell Biol. 2008, 9, 1004–1010. Doi: 10.1038/nrm2529.
  • Kim, E.H.; Sohn, S.; Kwon, H.J.; Kim, S.U.; Kim, M.J.; Lee, S.J.; Choi, K.S. Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Cancer Res. 2007, 67, 6314–6324. Doi: 10.1158/0008-5472.CAN-06-4217.
  • Scherz-Shouval, R.; Shvets, E.; Fass, E.; Shorer, H.; Gil, L.; Elazar, Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007, 26, 1749–1760. Doi: 10.1038/sj.emboj.7601623.
  • Zakeri, Z.; Melendez, A.; Lockshin, R.A. Detection of autophagy in cell death. Methods Enzymol. 2008, 442, 289–306. Doi: 10.1016/S0076-6879(08)01415-8.
  • Forgacs, A.L.; Burgoon, L.D.; Lynn, S.G.; LaPres, J.J.; Zacharewski, T. Effects of TCDD on the expression of nuclear encoded mitochondrial genes. Toxicol. Appl. Pharmacol. 2010, 246, 58–65. Doi: 10.1016/j.taap.2010.04.006.
  • Shen, D.; Dalton, T.P.; Nebert, D.W.; Shertzer, H.G. Glutathione redox state regulates mitochondrial reactive oxygen production. J. Biol. Chem. 2005, 280, 25305–25312. Doi: 10.1074/jbc.M500095200.
  • Kopf, P.G.; Walker, M.K. 2,3,7,8-Tetrachlorodibenzo-P-dioxin increases reactive oxygen species production in human endothelial cells via induction of cytochrome P4501A1. Toxicol. App. Pharm. 2010, 245, 91–99. Doi: 10.1016/j.taap.2010.02.007.
  • Aly, H.A.A.; Domenech, O. Cytotoxicity and mitochondrial dysfunction of 2,3,7,8-tetrachlorodibenzo-P-dioxin (TCDD) in isolated rat hepatocytes. Toxicol. Lett. 2009, 191, 79–87. Doi: 10.1016/j.toxlet.2009.08.008.
  • Dave, Z.; Byfield, N.; Wetzel, B.E. Assessing mitochondrial outer membrane permeabilization during apoptosis. Methods 2008, 46, 319–323. Doi: 10.1016/j.ymeth.2008.10.019.
  • Kagan, V.E.; Tyurin, V.A.; Jiang, J.; Tyurina, Y.Y.; Ritov, V.B.; Amoscato, A.A.; Osipov, A.N.; Belikova, N.A.; Kapralov, A.A.; Kini, V., et al. Cytochrome C acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem. Biol. 2005, 1, 223–232. Doi: 10.1038/nchembio727.
  • Petit, J.M.; Maftah, A.; Ratinaud, M.H.; Julien, R. 10N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Eur. J. Biochem. 1992, 209, 267–273. Doi: 10.1111/j.1432-1033.1992.tb17285.x.
  • Kakarla, P.; Vadluri, G.; Reddy, K.S. Response of hepatic antioxidant system to exercise training in aging female rat. J. Exp. Zool. A Comp. Exp. Biol. 2005, 303, 203–208. Doi: 10.1002/jez.a.149.
  • Kern, P.A.; Fishman, R.B.; Song, W.; Brown, A.D.; Fonseca, V. The effect of 2,3,7,8-tetrachlorodibenzo-P-dioxin (TCDD) on oxidative enzymes in adipocytes and liver. Toxicology 2002, 171, 117–125. Doi: 10.1016/S0300-483X(01)00564-9.
  • Park, J.S.; Chyun, J.H.; Kim, Y.K.; Line, L.L.; Chew, B.P. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr. Metab. 2010, 5, 7–18.
  • Tan, Z.; Chang, X.; Puga, A.; Xia, Y. Activation of mitogen-activated protein kinases (MAPKs) by aromatic hydrocarbons: Role in the regulation of aryl hydrocarbon receptor (AHR) function. Biochem. Pharmacol. 2002, 64, 771–780. Doi: 10.1016/S0006-2952(02)01138-3.
  • Kwon, M.J.; Jeong, K.S.; Choi, E.J.; Lee, B.H. 2,3,7,8-Tetrachlorodibenzo-P-dioxin (TCDD)-induced activation of mitogen-activated protein kinase signaling pathway in jurkat T cells. Pharmacol. Toxicol. 2003, 93, 186–190. Doi: 10.1034/j.1600-0773.2003.930406.x.
  • Weiss, C.; Faust, D.; Durk, H.; Kolluri, S.K.; Pelzer, A.; Schneider, S.; Dietrich, C.; Oesch, F.; Gottlicher, M. TCDD induces C-Jun expression via a novel Ah (dioxin) receptor-mediated p38-MAPK-dependent pathway. Oncogene 2005, 24, 4975–4983. Doi: 10.1038/sj.onc.1208679.
  • Park, S.J.; Yoon, W.K.; Kim, H.J.; Son, H.Y.; Cho, S.W.; Jeong, K.S.; Kim, T.H.; Kim, S.H.; Kim, S.R.; Ryu, S.Y. 2,3,7,8-Tetrachlorodibenzo-P-dioxin activates ERK and P38 mitogen-activated protein kinases in RAW 264.7 cells. Anticancer Res. 2005, 25, 2831–2836.
  • Sciullo, E.M.; Vogel, C.F.; Wu, D.; Murakami, A.; Ohigashi, H.; Matsumura F. Effects of selected food phytochemicals in reducing the toxic actions of TCDD and P, P0-DDT in U937 macrophages. Arch. Toxicol. 2010, 84, 957–966. Doi: 10.1007/s00204-010-0592-y.
  • Mukai, R.; Shirai, Y.; Saito, N.; Fukuda, I.; Nishiumi, S.; Yoshida, K.; Ashida, H. Suppression mechanisms of flavonoids on aryl hydrocarbon receptor-mediated signal transduction. Arch. Biochem. Biophys. 2010, 501, 134–141. Doi: 10.1016/j.abb.2010.05.002.
  • Chmill, S.; Kadow, S.; Winter, M.; Weighardt, H.; Esser, C. 2,3,7,8-Tetrachlorodibenzo-P-dioxin impairs stable establishment of oral tolerance in mice. Toxicol. Sci. 2010, 118, 98–107. Doi: 10.1093/toxsci/kfq232.
  • Kazantseva, M.G.; Highton, J.; Stamp, L.K.; Hessian, P.A. Dendritic cells provide a potential link between smoking and inflammation in rheumatoid arthritis. Arthritis Res. Ther. 2012, 14, R208. Doi: 10.1186/ar4046.
  • Wen, X.; Walle, U.K.; Walle, T. 5,7-dimethoxyflavone downregulates CYP1A1 expression and benzo[a] pyrene-induced DNA binding in Hep G2 cells. Carcinogenesis 2005, 26, 803–809. Doi: 10.1093/carcin/bgi015.
  • Cho, I.J.; Kim, S.G. Oltipraz inhibits 3-methylcholanthrene induction of CYP1A1 by CCAAT/enhancerbinding protein activation. J. Biol. Chem. 2003, 278, 44103–44112. Doi: 10.1074/jbc.M307597200.
  • Denison, M.S.; Soshilov, A.A.; He, G.; DeGroot, D.E.; Zhao, B. Exactly the same but different: Promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol. Sci. 2011, 124, 1–22. Doi: 10.1093/toxsci/kfr218.
  • Billiard, S.M.; Timme-Laragy, A.R.; Wassenberg, D.M.; Cockman, C.; Di Giulio, R.T. The role of the aryl hydrocarbon receptor pathway in mediating synergistic developmental toxicity of polycyclic aromatic hydrocarbons to zebrafish. Toxicol. Sci. 2006, 92, 526–536. Doi: 10.1093/toxsci/kfl011.
  • Sagredo, C.; Mollerup, S.; Cole, K.J.; Phillips, D.H.; Uppstad, H.; Ovrebo, S. Biotransformation of benzo[a]pyrene in Ahr knockout mice is dependent on time and route of exposure. Chem. Res. Toxicol. 2009, 22, 584–591. Doi: 10.1021/tx8003664.
  • Yu, H.; Du, Y.; Zhang, X.; Sun, Y.; Li, S.; Dou, Y.; Li, Z.; Yuan, H.; Zhao, W. The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway. Toxicol. Appl. Pharmacol. 2014, 280, 502–510. Doi: 10.1016/j.taap.2014.08.025.
  • Bellows, C.G.; Aubin, J.E.; Heersche, J.N. Initiation and progression of mineralization of bone nodules formed in vitro: The role of alkaline phosphatase and organic phosphate. Bone Miner. 1991, 14, 27–40. Doi: 10.1016/0169-6009(91)90100-E.
  • Gordon, J.A.; Tye, C.E.; Sampaio, A.V.; Underhill, T.M.; Hunter, G.K.; Goldberg, H.A. Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone 2007, 41, 462–473. Doi: 10.1016/j.bone.2007.04.191.
  • Finnila, M.A.; Zioupos, P.; Herlin, M.; Miettinen, H.M.; Simanainen, U.; Hakansson, H.; Tuukkanen, J.; Viluksela, M.; Jamsa, T. Effects of 2,3,7,8-tetrachlorodibenzo-P-dioxin exposure on bone material properties. J. Biomech. 2010, 43, 1097–1103. Doi: 10.1016/j.jbiomech.2009.12.011.
  • Korkalainen, M.; Kallio, E.; Olkku, A.; Nelo, K.; Ilvesaro, J.; Tuukkanen, J.; Mahonen, A.; Viluksela, M. Dioxins interfere with differentiation of osteoblasts and osteoclasts. Bone 2009, 44, 1134–1142. Doi: 10.1016/j.bone.2009.02.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.