Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 53, 2018 - Issue 7
647
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effects of metal oxide nanoparticles on nitrification in wastewater treatment systems: A systematic review

, &
Pages 659-668 | Received 07 Nov 2017, Accepted 17 Jan 2018, Published online: 22 Feb 2018

References

  • Yang, Y.; Westerhoff, P. Presence in, and Release of, Nanomaterials from Consumer Products. In Nanomaterial; Capco, D. G.; Chen, Y., Eds.; Springer: Dordrecht, Netherlands, 2014, 811, pp. 1–17.
  • Zhang, Y.; Leu, Y. R.; Aitken, R. J.; Riediker, M. Inventory of engineered nanoparticle-containing consumer products available in the Singapore retail market and likelihood of release into the aquatic environment. Int. J. Environ. Res. Public Health 2015, 12, 8717–8743. doi:10.3390/ijerph120808717.
  • Zhang, Q.; Uchaker, E.; Candelaria, S. L.; Cao, G. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171. doi:10.1039/c3cs00009e.
  • Stark, W. J.; Stoessel, P. R.; Wohlleben, W.; Hafner, A. Industrial applications of nanoparticles. Chem. Soc. Rev. 2015, 44, 5793–5805. doi:10.1039/C4CS00362D.
  • Schmid, K.; Riediker, M. Use of nanoparticles in Swiss industry: a targeted survey. Environ. Sci. Technol. 2008, 42, 2253–2260. doi:10.1021/es071818o.
  • Sharma, N.; Ojha, H.; Bharadwaj, A.; Pathak, D. P.; Sharma, R. K. Preparation and catalytic applications of nanomaterials: a review. RSC Adv. 2015, 5, 53381–53403. doi:10.1039/C5RA06778B.
  • Brar, S. K.; Verma, M.; Tyagi, R. D.; Surampalli, R. Y. Engineered nanoparticles in wastewater and wastewater sludge–evidence and impacts. Waste Manage. 2010, 30, 504–520. doi:10.1016/j.wasman.2009.10.012.
  • Gottschalk, F.; Ort, C.; Scholz, R. W.; Nowack, B. Engineered nanomaterials in rivers–exposure scenarios for switzerland at high spatial and temporal resolution. Environ. Pollut. 2011, 159, 3439–3445. doi:10.1016/j.envpol.2011.08.023.
  • Gottschalk, F.; Kost, E.; Nowack, B. Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Environ. Toxicol. Chem. 2013, 32, 1278–1287. doi:10.1002/etc.2177.
  • Marcoux, M. A.; Matias, M.; Olivier, F.; Keck, G. Review and prospect of emerging contaminants in waste–key issues and challenges linked to their presence in waste treatment schemes: general aspects and focus on nanoparticles. Waste Manage. 2013, 33, 2147–2156. doi:10.1016/j.wasman.2013.06.022.
  • Nowack, B.; Bucheli, T. D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 2007, 150, 5–22. doi:10.1016/j.envpol.2007.06.006.
  • Kunhikrishnan, A.; Shon, H. K.; Bolan, N. S.; El Saliby, I.; Vigneswaran, S. Sources, distribution, environmental fate, and ecological effects of nanomaterials in wastewater streams. Crit. Rev. Env. Sci. Technol. 2015, 45, 277–318. doi:10.1080/10643389.2013.852407.
  • Choi, O.; Deng, K. K.; Kim, N.-J.; Ross, L.; Surampalli, R. Y.; Hu, Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008, 42, 3066–3074. doi:10.1016/j.watres.2008.02.021.
  • Choi, O.; Hu, Z. Nitrification inhibition by silver nanoparticles. Water Sci. Technol. 2009, 59, 1699–1702. doi:10.2166/wst.2009.205.
  • Zheng, X.; Wu, R.; Chen, Y. Effects of ZnO Nanoparticles on wastewater biological nitrogen and phosphorus removal. Environ. Sci. Technol. 2011, 45, 2826–2832. doi:10.1021/es2000744.
  • Niazi, J. H.; Gu, M. B. Toxicity of metallic nanoparticles in microorganisms—a review. In Atmos. Biol. Environ. Monit.; Kim, Y. J.; Platt, U.; Gu, M. B.; Iwahashi, H. Eds.; Springer: Dordrecht, Netherlands, 2009, pp. 193–206.
  • Keen, G. A.; Prosser, J. I. Steady state and transient growth of autotrophic nitrifying bacteria. Arch. Microbiol. 1987, 147, 73–79. doi:10.1007/BF00492908.
  • Li, X.; Kapoor, V.; Impelliteri, C.; Chandran, K.; Domingo, J. W. S. Measuring nitrification inhibition by metals in wastewater treatment systems: current state of science and fundamental research needs. Crit. Rev. Environ. Sci. Technol. 2016, 46, 249–289. doi:10.1080/10643389.2015.1085234.
  • Wang, S.; Li, S.; Wang, W.; You, H. The impact of zinc oxide nanoparticles on nitrification and the bacterial community in activated sludge in an SBR. RSC Adv. 2015, 5, 67335–67342. doi:10.1039/C5RA07106B.
  • Luo, Z.; Qiu, Z.; Chen, Z.; Du Laing, G.; Liu, A.; Yan, C. Impact of TiO2 and ZnO nanoparticles at predicted environmentally relevant concentrations on ammonia-oxidizing bacteria cultures under ammonia oxidation. Environ. Sci. Pollut. Res. 2015, 22, 2891–2899. doi:10.1007/s11356-014-3545-9.
  • Luo, Z.; Chen, Z.; Qiu, Z.; Li, Y.; Du Laing, G.; Liu, A.; Yan, C. Gold and silver nanoparticle effects on ammonia-oxidizing bacteria cultures under ammoxidation. Chemosphere 2015, 120, 737–742. doi:10.1016/j.chemosphere.2014.01.075.
  • Stauss, S.; Muneoka, H.; Urabe, K.; Terashima, K. Review of electric discharge microplasmas generated in highly fluctuating fluids: characteristics and application to nanomaterials synthesis. Phys. Plasmas 2015, 22, 057103. doi:10.1063/1.4921145.
  • Tay, C. Y.; Setyawati, M. I.; Xie, J.; Parak, W. J.; Leong, D. T. Back to basics: exploiting the innate physico‐chemical characteristics of nanomaterials for biomedical applications. Adv. Funct. Mater. 2014, 24, 5936–5955. doi:10.1002/adfm.201401664.
  • Navya, P. N.; Daima, H. K. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Converg. 2016, 3, 1–14. doi:10.1186/s40580-016-0064-z.
  • Jain, J.; Arora, S.; Rajwade, J. M.; Omray, P.; Khandelwal, S.; Paknikar, K. M. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol. Pharmaceutics 2009, 6, 1388–1401. doi:10.1021/mp900056g.
  • Sridhar, R.; Lakshminarayanan, R.; Madhaiyan, K.; Barathi, V. A.; Lim, K. H. C.; Ramakrishna, S. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem. Soc. Rev. 2015, 44, 790–814. doi:10.1039/C4CS00226A.
  • Lewicka, Z. A.; Benedetto, A. F.; Benoit, D. N.; William, W. Y.; Fortner, J. D.; Colvin, V. L. The structure, composition, and dimensions of TiO2 and ZnO nanomaterials in commercial sunscreens. J. Nanopart. Res. 2011, 13, 3607–3617. doi:10.1007/s11051-011-0438-4.
  • Wu, X. L.; Jiang, L. Y.; Cao, F. F.; Guo, Y. G.; Wan, L. J. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy‐storage devices. Adv. Mater. 2009, 21, 2710–2714. doi:10.1002/adma.200802998.
  • Tsai, C. H.; Tsai, Y. T.; Huang, T. W.; Hsu, S. Y.; Chen, Y. F.; Jhang, Y. H.; Hsieh, L.; Wu, C. C.; Chen, Y. S. Influences of stacking architectures of TiO2 nanoparticle layers on characteristics of dye-sensitized solar cells. J. Nanomater. 2013, 2013, 25. doi:10.1155/2013/915461.
  • Khin, M. M.; Nair, A. S.; Babu, V. J.; Murugan, R.; Ramakrishna, S. A Review on nanomaterials for environmental remediation. Energy Environ. Sci. 2012, 5, 8075–8109. doi:10.1039/c2ee21818f.
  • Valli, F.; Tijoriwala, K.; Mahapatra, A. Nanotechnology for water purification. Int. J. Nucl. Desalin. 2010, 4, 49–57. doi:10.1504/IJND.2010.033766.
  • Xu, P.; Zeng, G. M.; Huang, D. L.; Feng, C. L.; Hu, S.; Zhao, M. H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G. X.; et al. Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 2012, 424, 1–10. doi:10.1016/j.scitotenv.2012.02.023.
  • Taghavi, S. M.; Momenpour, M.; Azarian, M.; Ahmadian, M.; Souri, F.; Taghavi, S. A.; Sadeghain, M.; Karchani, M. Effects of nanoparticles on the environment and outdoor workplaces. Electron. Physician 2013, 5, 706–712.
  • Wagner, S.; Gondikas, A.; Neubauer, E.; Hofmann, T.; von der Kammer, F. Spot the difference: engineered and natural nanoparticles in the environment—release, behavior, and fate. Angew. Chem. Int. Ed. 2014, 53, 12398–12419.
  • Collin, B.; Auffan, M.; Johnson, A. C.; Kaur, I.; Keller, A. A.; Lazareva, A.; Lead, J. R.; Ma, X.; Merrifield, R. C.; Svendsen, C.; White, J. C. Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. Environ. Sci. Nano 2014, 1, 533–548. doi:10.1039/C4EN00149D.
  • Yu, R.; Wu, J.; Liu, M.; Chen, L.; Zhu, G.; Lu, H. Physiological and transcriptional responses of Nitrosomonas Europaea to TiO2 and ZnO nanoparticles and their mixtures. Environ. Sci. Pollut. Res. 2016, 1–12.
  • Radniecki, T. S.; Stankus, D. P.; Neigh, A.; Nason, J. A.; Semprini, L. Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas Europaea. Chemosphere 2011, 85, 43–49. doi:10.1016/j.chemosphere.2011.06.039.
  • Yuan, Z.; Li, J.; Cui, L.; Xu, B.; Zhang, H.; Yu, C. P. Interaction of silver nanoparticles with pure nitrifying bacteria. Chemosphere 2013, 90, 1404–1411. doi:10.1016/j.chemosphere.2012.08.032.
  • Arnaout, C. L.; Gunsch, C. K. Impacts of silver nanoparticle coating on the nitrification potential of Nitrosomonas Europaea. Environ. Sci. Technol. 2012, 46, 5387–5395. doi:10.1021/es204540z.
  • Fang, X.; Yu, R.; Li, B.; Somasundaran, P.; Chandran, K. Stresses exerted by ZnO, CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas Europaea. J. Colloid. Interface. Sci. 2010, 348, 329–334. doi:10.1016/j.jcis.2010.04.075.
  • Yu, R.; Fang, X.; Somasundaran, P.; Chandran, K. Short-term effects of TiO2, CeO2, and ZnO nanoparticles on metabolic activities and gene expression of Nitrosomonas Europaea. Chemosphere 2015, 128, 207–215. doi:10.1016/j.chemosphere.2015.02.002.
  • Wang, J. X.; Sun, X. W.; Yang, Y.; Huang, H.; Lee, Y. C.; Tan, O. K.; Vayssieres, L. Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nanotechnology 2006, 17, 4995–4998. doi:10.1088/0957-4484/17/19/037.
  • Degen, A.; Kosec, M. Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. J. Eur. Ceram. Soc. 2000, 20, 667–673. doi:10.1016/S0955-2219(99)00203-4.
  • Bedi, P.; Kaur, A. An overview on uses of zinc oxide nanoparticles. World J. Pharm. Pharm. Sci. 2015, 4, 1177–1196.
  • Richter, T. V.; Stelzl, F.; Schulz-Gericke, J.; Kerscher, B.; Würfel, U.; Niggemann, M.; Ludwigs, S. Room temperature vacuum-induced ligand removal and patterning of ZnO nanoparticles: from semiconducting films towards printed electronics. J. Mater. Chem. 2010, 20, 874–879. doi:10.1039/B916778C.
  • Espitia, P. J. P.; Soares, N. D. F. F.; dos Reis Coimbra, J. S.; de Andrade, N. J.; Cruz, R. S.; Medeiros, E. A. A. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 2012, 5, 1447–1464. doi:10.1007/s11947-012-0797-6.
  • Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 2007, 9, 479–489. doi:10.1007/s11051-006-9150-1.
  • Shen, W.; Xiong, H.; Xu, Y.; Cai, S.; Lu, H.; Yang, P. ZnOrPoly (methyl methacrylate) nanobeads for enriching and desalting low-abundant proteins followed by directly MALDI-TOF MS analysis. Anal. Chem. 2008, 80, 6758–6763. doi:10.1021/ac801001b.
  • Prasad, T. N. V. K. V.; Sudhakar, P.; Sreenivasulu, Y.; Latha, P.; Munaswamy, V.; Reddy, K. R.; Sreeprasad, T. S.; Sajanlal, P. R.; Pradeep, T. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr. 2012, 35, 905–927. doi:10.1080/01904167.2012.663443.
  • Gottschalk, F.; Sonderer, T.; Scholz, R. W.; Nowack, B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 2009, 43, 9216–9222. doi:10.1021/es9015553.
  • Ren, G.; Hu, D.; Cheng, E. W.; Vargas-Reus, M. A.; Reip, P.; Allaker, R. P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents. 2009, 33, 587–590. doi:10.1016/j.ijantimicag.2008.12.004.
  • Ahamed, M.; Alhadlaq, H. A.; Khan, M. A.; Karuppiah, P.; Al-Dhabi, N. A. Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J. Nanomater. 2014, 2014, 17. doi:10.1155/2014/637858.
  • Filipič, G.; Cvelbar, U. Copper Oxide Nanowires: A Review of Growth. Nanotechnology 2012, 23, 194001. doi:10.1088/0957-4484/23/19/194001.
  • El-Trass, A.; ElShamy, H.; El-Mehasseb, I.; El-Kemary, M. CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Appl. Surf. Sci. 2012, 258, 2997–3001. doi:10.1016/j.apsusc.2011.11.025.
  • Melián, J. H.; Rodrıguez, J. D.; Suárez, A. V.; Rendón, E. T.; Do Campo, C. V.; Arana, J.; Peña, J. P. The photocatalytic disinfection of urban waste waters. Chemosphere 2000, 41, 323–327. doi:10.1016/S0045-6535(99)00502-0.
  • Smijs, T. G.; Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 2011, 4, 95–112. doi:10.2147/NSA.S19419.
  • Rezaei, B.; Mosaddeghi, H. Applications of titanium dioxdie nanocoating. In Nano-Technology in Environments Conference, Isfahan, Iran, February 2006, 6.
  • Dahle, J. T.; Arai, Y. Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles. Int. J. Environ. Res. Public Health. 2015, 12, 1253–1278. doi:10.3390/ijerph120201253.
  • Reinhardt, K.; Winkler, H. Cerium mischmetal, cerium alloys, and cerium compounds. Ullmann's Encyclopedia Ind. Chem. 2002, 285–300.
  • Cook, L. M. Chemical processes in glass polishing. J. Non-Cryst. Solids. 1990, 120, 152–171. doi:10.1016/0022-3093(90)90200-6.
  • Feng, X.; Sayle, D. C.; Wang, Z. L.; Paras, M. S.; Santora, B.; Sutorik, A. C.; Sayle, T. X.; Yang, Y.; Ding, Y.; Wang, X.; et al. Converting ceria polyhedral nanoparticles into single-crystal nanospheres. Science 2006, 312, 1504–1508. doi:10.1126/science.1125767.
  • Wijnhoven, S. W. P.; Dekkers, S.; Hagens, W. I.; De Jong, W. H. Exposure to nanomaterials in consumer products. In RIVM Letter Report. 340370001; National Institute for Public Health and the Environment: Bilthoven, Netherland, 2009, 2009.
  • Handy, R. D.; Owen, R.; Valsami-Jones, E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 2008, 17, 315–325. doi:10.1007/s10646-008-0206-0.
  • Limbach, L. K.; Bereiter, R.; Müller, E.; Krebs, R.; Gälli, R.; Stark, W. J. Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ. Sci. Technol. 2008, 42, 5828–5833. doi:10.1021/es800091f.
  • Kiser, M. A.; Ryu, H.; Jang, H.; Hristovski, K.; Westerhoff, P. Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Res. 2010, 44, 4105–4114. doi:10.1016/j.watres.2010.05.036.
  • Westerhoff, P.; Song, G.; Hristovski, K.; Kiser, M. A. Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J. Environ. Monit. 2011, 13, 1195–1203. doi:10.1039/c1em10017c.
  • Mudunkotuwa, I. A.; Rupasinghe, T.; Wu, C.-M.; Grassian, V. H. Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid. Langmuir 2012, 28, 396–403. doi:10.1021/la203542x.
  • Auffan, M.; Rose, J.; Wiesner, M. R.; Bottero, J.-Y. Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ. Pollut. 2009, 157, 1127–1133. doi:10.1016/j.envpol.2008.10.002.
  • Auffan, M.; Rose, J.; Bottero, J.-Y.; Lowry, G. V.; Jolivet, J.-P.; Wiesner, M. R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634–641. doi:10.1038/nnano.2009.242.
  • Tiede, K.; Hassellöv, M.; Breitbarth, E.; Chaudhry, Q.; Boxall, A. B. Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J. Chromatogr. A. 2009, 1216, 503–509. doi:10.1016/j.chroma.2008.09.008.
  • Kim, B.; Park, C.-S.; Murayama, M.; Hochella Jr, M. F. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ. Sci. Technol. 2010, 44, 7509–7514. doi:10.1021/es101565j.
  • Rottman, J.; Shadman, F.; Sierra-Alvarez, R. Interactions of inorganic oxide nanoparticles with sewage biosolids. Water Sci. Technol. 2012, 66, 1821–1827. doi:10.2166/wst.2012.354.
  • Liu, G.; Wang, D.; Wang, J.; Mendoza, C. Effect of ZnO particles on activated sludge: role of particle dissolution. Sci. Total Environ. 2011, 409, 2852–2857. doi:10.1016/j.scitotenv.2011.03.022.
  • Lombi, E.; Donner, E.; Tavakkoli, E.; Turney, T. W.; Naidu, R.; Miller, B. W.; Scheckel, K. G. Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environ. Sci. Technol. 2012, 46, 9089–9096. doi:10.1021/es301487s.
  • Kapoor, V.; Elk, M.; Li, X.; Santo Domingo, J. W. Inhibitory effect of cyanide on wastewater nitrification determined using SOUR and RNA‐based gene‐specific assays. Lett. Appl. Microbiol. 2016, 63, 155–161. doi:10.1111/lam.12603.
  • Kapoor, V.; Li, X.; Elk, M.; Chandran, K.; Impellitteri, C. A.; Santo Domingo, J. W. Impact of heavy metals on transcriptional and physiological activity of nitrifying bacteria. Environ. Sci. Technol. 2015, 49, 13454–13462. doi:10.1021/acs.est.5b02748.
  • Wang, D.; Lin, Z.; Wang, T.; Yao, Z.; Qin, M.; Zheng, S.; Lu, W. Where does the toxicity of metal oxide nanoparticles come from: the nanoparticles, the ions, or a combination of both?. J. Hazard. Mater. 2016, 308, 328–334. doi:10.1016/j.jhazmat.2016.01.066.
  • Hu, Z.; Chandran, K.; Grasso, D.; Smets, B. F. Effect of nickel and cadmium speciation on nitrification inhibition. Environ. Sci. Technol. 2002, 36, 3074–3078. doi:10.1021/es015784a.
  • García, A.; Delgado, L.; Torà, J. A.; Casals, E.; González, E.; Puntes, V.; Font, X.; Carrera, J.; Sánchez, A. Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J. Hazard. Mater. 2012, 199, 64–72. doi:10.1016/j.jhazmat.2011.10.057.
  • Su, H. L.; Chou, C. C.; Hung, D. J.; Lin, S. H.; Pao, I. C.; Lin, J. H.; Huang, F. L.; Dong, R. X.; Lin, J. J. The disruption of bacterial membrane integrity through ros generation induced by nanohybrids of silver and clay. Biomaterials 2009, 30, 5979–5987. doi:10.1016/j.biomaterials.2009.07.030.
  • Choi, O.; Hu, Z. Role of reactive oxygen species in determining nitrification inhibition by metallic/oxide nanoparticles. J. Environ. Eng. 2009, 135, 1365–1370. doi:10.1061/(ASCE)EE.1943-7870.0000103.
  • Zhang, Z.; Gao, P.; Li, M.; Cheng, J.; Liu, W.; Feng, Y. Influence of silver nanoparticles on nutrient removal and microbial communities in SBR process after long-term exposure. Sci. Total Environ. 2016, 569–570, 234–243. doi:10.1016/j.scitotenv.2016.06.115.
  • Wang, S.; Gao, M.; She, Z.; Zheng, D.; Jin, C.; Guo, L.; Zhao, Y.; Li, Z.; Wang, X. Long-term effects of ZnO nanoparticles on nitrogen and phosphorus removal, microbial activity and microbial community of a sequencing batch reactor. Bioresour. Technol. 2016, 216, 428–436. doi:10.1016/j.biortech.2016.05.099.
  • Liu, G.; Wang, J. Effects of nano-copper (II) oxide and nano-magnesium oxide particles on activated sludge. Water Environ. Res. 2012, 84, 569–576. doi:10.2175/106143012X13373575830593.
  • Clar, J. G.; Li, X.; Impellitteri, C. A.; Bennett-Stamper, C.; Luxton, T. P. Copper nanoparticle induced cytotoxicity to nitrifying bacteria in wastewater treatment: a mechanistic copper speciation study by X-ray absorption spectroscopy. Environ. Sci. Technol. 2016, 50, 9105–9113. doi:10.1021/acs.est.6b01910.
  • Li, D.; Cui, F.; Zhao, Z.; Liu, D.; Xu, Y.; Li, H.; Yang, X. The impact of titanium dioxide nanoparticles on biological nitrogen removal from wastewater and bacterial community shifts in activated sludge. Biodegradation 2014, 25, 167–177. doi:10.1007/s10532-013-9648-z.
  • American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater 20th Edn; American Public Health Association: Washington, DC, 1998.
  • Circu, M. L.; Aw, T. Y. Reactive oxygen species, cellular redox systems and apoptosis. Free Radic. Biol. Med. 2010, 48, 749–762. doi:10.1016/j.freeradbiomed.2009.12.022.
  • Farber, J. L. Mechanisms of cell injury by activated oxygen species. Environ. Health Perspect. 1994, 102, 17. doi:10.1289/ehp.94102s1017.
  • Yang, Y.; Wang, J.; Xiu, Z.; Alvarez, P. J. Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen‐cycling bacteria. Environ. Toxicol. Chem. 2013, 32, 1488–1494.
  • Choi, O.; Hu, Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 2008, 42, 4583–4588. doi:10.1021/es703238h.
  • Yin, H.; Casey, P. S.; McCall, M. J.; Fenech, M. Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. Langmuir 2010, 26, 15399–15408. doi:10.1021/la101033n.
  • Zheng, X.; Chen, Y.; Wu, R. Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge. Environ. Sci. Technol. 2011, 45, 7284–7290. doi:10.1021/es2008598.
  • Zhang, C.; Liang, Z.; Hu, Z. Bacterial response to a continuous long-term exposure of silver nanoparticles at sub-ppm silver concentrations in a membrane bioreactor activated sludge system. Water Res. 2014, 50, 350–358. doi:10.1016/j.watres.2013.10.047.
  • Yang, Y.; Li, M.; Michels, C.; Moreira‐Soares, H.; Alvarez, P. J. Differential sensitivity of nitrifying bacteria to silver nanoparticles in activated sludge. Environ. Toxicol. Chem. 2014, 33, 2234–2239. doi:10.1002/etc.2678.
  • Das, P.; Williams, C. J.; Fulthorpe, R. R.; Hoque, M. E.; Metcalfe, C. D.; Xenopoulos, M. A. Changes in bacterial community structure after exposure to silver nanoparticles in natural waters. Environ. Sci. Technol. 2012, 46, 9120–9128. doi:10.1021/es3019918.
  • Harms, G.; Layton, A. C.; Dionisi, H. M.; Gregory, I. R.; Garrett, V. M.; Hawkins, S. A.; Robinson, K. G.; Sayler, G. S. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 2003, 37, 343–351. doi:10.1021/es0257164.
  • Rowan, A. K.; Snape, J. R.; Fearnside, D.; Barer, M. R.; Curtis, T. P.; Head, I. M. Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol. Ecol. 2003, 43, 195–206. doi:10.1111/j.1574-6941.2003.tb01059.x.
  • Smith, C. J.; Osborn, A. M. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 2009, 67, 6–20. doi:10.1111/j.1574-6941.2008.00629.x.
  • Purkhold, U.; Wagner, M.; Timmermann, G.; Pommerening-Röser, A.; Koops, H. P. 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. ISME J. 2003, 53, 1485–1494.
  • Kapoor, V.; Li, X.; Chandran, K.; Impellitteri, C. A.; Santo Domingo, J. W. Use of functional gene expression and respirometry to study wastewater nitrification activity after exposure to low doses of copper. Environ. Sci. Poll. Res. 2016, 23, 6443–6450. doi:10.1007/s11356-015-5843-2.
  • Kapoor, V.; Elk, M.; Li, X.; Impellitteri, C. A.; Santo Domingo, J. W. Effects of Cr (III) and Cr (VI) on nitrification inhibition as determined by SOUR, function-specific gene expression and 16S rRNA sequence analysis of wastewater nitrifying enrichments. Chemosphere 2016, 147, 361–367. doi:10.1016/j.chemosphere.2015.12.119.
  • Chen, Y.; Wang, D.; Zhu, X.; Zheng, X.; Feng, L. Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process. Environ. Sci. Technol. 2012, 46, 12452–12458. doi:10.1021/es302646q.
  • Kuo, D. H. W.; Robinson, K. G.; Layton, A. C.; Meyers, A. J.; Sayler, G. S. Transcription levels (amoA mRNA-based) and population dominance (amoA gene-based) of ammonia-oxidizing bacteria. J. Ind. Microbiol. Biotechnol. 2010, 37, 751–757. doi:10.1007/s10295-010-0728-3.
  • Lazareva, A.; Keller, A. A. Estimating potential life cycle releases of engineered nanomaterials from wastewater treatment plants. ACS Sus. Chem. Eng. 2014, 2, 1656–1665. doi:10.1021/sc500121w.
  • Kiser, M. A.; Westerhoff, P.; Benn, T.; Wang, Y.; Perez-Rivera, J.; Hristovski, K. Titanium nanomaterial removal and release from wastewater treatment plants. Environ. Sci. Technol. 2009, 43, 6757–6763. doi:10.1021/es901102n.
  • Hou, J.; You, G.; Xu, Y.; Wang, C.; Wang, P.; Miao, L.; Ao, Y.; Li, Y.; LV, B.; Yang, Y. Impacts of CuO nanoparticles on nitrogen removal in sequencing batch biofilm reactors after short-term and long-term exposure and the functions of natural organic matter. Environ. Sci. Pollut. Res. 2016, 23, 22116–22125. doi:10.1007/s11356-016-7281-1.
  • Qiu, G.; Au, M.-J.; Ting, Y.-P. Impacts of nano-TiO2 on system performance and bacterial community and their removal during biological treatment of wastewater. Water Air Soil Pollut. 2016, 227, 386. doi:10.1007/s11270-016-3081-y.
  • Li, D.; Cui, F.; Zhao, Z.; Liu, D.; Xu, Y.; Li, H.; Yang, X. The impact of titanium dioxide nanoparticles on biological nitrogen removal from wastewater and bacterial community shifts in activated sludge. Biodegradation 2014, 25, 167–177. doi:10.1007/s10532-013-9648-z.
  • Chen, Y.; Su, Y.; Zheng, X.; Chen, H.; Yang, H. Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure. Water Res. 2012, 46, 4379–4386. doi:10.1016/j.watres.2012.05.042.
  • Zheng, X.; Su, Y.; Chen, Y. Acute and chronic responses of activated sludge viability and performance to silica nanoparticles. Environ. Sci. Technol. 2012, 46, 7182–7188. doi:10.1021/es300777b.
  • García, A.; Delgado, L.; Torà, J. A.; Casals, E.; González, E.; Puntes, V.; Font, X.; Carrera, J.; Sánchez, A. Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J. Hazard. Mater. 2012, 199, 64–72. doi:10.1016/j.jhazmat.2011.10.057.
  • Qiu, G.; Neo, S.-Y.; Ting, Y.-P. Effects of CeO2 nanoparticles on system performance and bacterial community dynamics in a sequencing batch reactor. Water Sci. Technol. 2016, 73, 95–101. doi:10.2166/wst.2015.462.
  • Ma, Y.; Metch, J. W.; Vejerano, E. P.; Miller, I. J.; Leon, E. C.; Marr, L. C.; Vikesland, P. J.; Pruden, A. Microbial community response of nitrifying sequencing batch reactors to silver, zero-valent iron, titanium dioxide and cerium dioxide nanomaterials. Water Res. 2015, 68, 87–97. doi:10.1016/j.watres.2014.09.008.
  • Rotthauwe, J. H.; Witzel, K. P.; Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997, 63, 4704–4712.
  • Wu, Q.; Huang, K.; Sun, H.; Ren, H.; Zhang, X.-X.; Ye, L. Comparison of the impacts of zinc ions and zinc nanoparticles on nitrifying microbial community. J. Hazard. Mater. 2018, 343, 166–175. doi:10.1016/j.jhazmat.2017.09.022.
  • Yu, R.; Chandran, K. Strategies of Nitrosomonas Europaea 19718 to counter low dissolved oxygen and high nitrite concentrations. BMC Microbiol. 2010, 10, 70. doi:10.1186/1471-2180-10-70.
  • Poly, F.; Wertz, S.; Brothier, E.; Degrange, V. First exploration of nitrobacter diversity in soils by a PCR cloning-sequencing approach targeting functional gene nxrA. FEMS Microbiol. Ecol. 2007, 63, 132–140. doi:10.1111/j.1574-6941.2007.00404.x.
  • Hermansson, A.; Lindgren, P.-E. Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Appl. Environ. Microbiol. 2001, 67, 972–976. doi:10.1128/AEM.67.2.972-976.2001.
  • Regan, J. M.; Harrington, G. W.; Noguera, D. R. Ammonia- and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system. Appl. Environ. Microbiol. 2002, 68, 73–81. doi:10.1128/AEM.68.1.73-81.2002.
  • Degrange, V.; Bardin, R. Detection and Counting of Nitrobacter Populations in Soil by PCR. Appl. Environ. Microbiol. 1995, 61, 2093–2098.
  • Graham, D. W.; Knapp, C. W.; Van Vleck, E. S.; Bloor, K.; Lane, T. B.; Graham, C. E. Experimental demonstration of chaotic instability in biological nitrification. ISME J. 2007, 1, 385–393. doi:10.1038/ismej.2007.45.
  • Kindaichi, T.; Kawano, Y.; Ito, T.; Satoh, H.; Okabe, S. Population dynamics and in situ kinetics of nitrifying bacteria in autotrophic nitrifying biofilms as determined by real‐time quantitative PCR. Biotechnol. Bioeng. 2006, 94, 1111–1121. doi:10.1002/bit.20926.
  • Weisburg, W. G.; Barns, S. M.; Pelletier, D. A.; Lane, D. J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. doi:10.1128/jb.173.2.697-703.1991.
  • Muyzer, G.; de Waal, E. C.; Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.