Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 53, 2018 - Issue 10
105,015
Views
5
CrossRef citations to date
0
Altmetric
Articles

Environmental impact of biogas: A short review of current knowledge

, , , , &
Pages 899-906 | Received 26 Jan 2018, Accepted 23 Mar 2018, Published online: 13 Apr 2018

References

  • Cecchi, F.; Cavinato, C. Anaerobic Digestion of Bio-Waste: A Mini-Review Focusing on Territorial and Environmental Aspects. Waste Manage. Res. 2015, 33, 429–438. DOI:10.1177/0734242X14568610.
  • Steininger, K. W.; Voraberger, H. Exploiting the Medium Term Biomass Energy Potentials in Austria. A Comparison of Costs and Macroeconomic Impact. Environ. Resour. Econ. 2003, 24, 359–377. DOI:10.1023/A:1023680125027.
  • Tricase, C.; Lombardi, M. State of the Art and Prospects of Italian Biogas Production from Animal Sewage: Technical-Economic Considerations. Renewable Energy 2009, 34, 477–485. DOI:10.1016/j.renene.2008.06.013.
  • Angelidaki, A.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J. L.; Guwy, A. J.; Kalyuzhnyi, S.; Jenicek, P.; van Lier; J. B. Defining the Biomethane Potential (BMP) of Solid Organic Wastes and Energy Crops: A Proposed Protocol for Batch Assays. Water Sci. Technol. 2009, 59(5), 927–934. DOI:10.2166/wst.2009.040.
  • Fruergaard, T.; Hyks, J.; Astrup, T. Life-Cycle Assessment of Selected Management Options for Air Pollution Control Residues from Waste Incineration. Sci. Total Environ. 2010, 10(15), 4672–4680. DOI:10.1016/j.scitotenv.2010.05.029.
  • Giovanis, E. Relationship Between Recycling Rate and Air Pollution: Waste Management in the State of Massachusetts. Waste Manage. 2015, 40, 192–203. DOI:10.1016/j.wasman.2015.03.006.
  • Domingo, J. L.; Rovira, J.; Vilavert, L.; Nadal, M.; Figueras, M. J.; Schuhmacher, M. Health Risks for the Population Living in the Vicinity of an Integrated Waste Management Facility: Screening Environmental Pollutants. Sci. Total Environ. 2015, 518–519, 363–370. DOI:10.1016/j.scitotenv.2015.03.010.
  • Freire, M.; Lopes, H.; Tarelho; L. A. C. Critical Aspects of Biomass Ashes Utilization in Soils: Composition; Leachability; PAH and PCDD/F. Waste Manage. 2015, 46, 304–315. DOI:10.1016/j.wasman.2015.08.036.
  • Vakalis, S.; Boschiero, M.; Moustakas, K.; Sotiropoulos, A.; Malamis, D.; Zerbe, S.; Baratieri; M. Assessing the Suitability of Biomass Ashes from Combustion in Boilers as Soil Fertilizers: Statistical Entropy Analysis and Introduction of the Potassium Utilization Potential Factor. Waste Biomass Valorization 2017, 8(5), 1569–1576. DOI:10.1007/s12649-017-9852-x.
  • Tambone, F.; Terruzzi, L.; Scaglia, B.; Adani, F. Composting of the Solid Fraction of Digestate Derived from Pig Slurry: Biological Processes and Compost Properties. Waste Manage. 2015, 35, 55–61. DOI:10.1016/j.wasman.2014.10.014.
  • Delzeit, R.; Kellner, U. The Impact of Plant Size and Location on Profitability of Biogas Plants in Germany Under Consideration of Processing Digestates. Biomass Bioenergy 2013, 52, 43–53. DOI:10.1016/j.biombioe.2013.02.029.
  • Särkilahti, M.; Kinnunen, V.; Kettunen, R.; Jokinen, A.; Rintala, J. Replacing Centralised Waste and Sanitation Infrastructure with Local Treatment and Nutrient Recycling: Expert Opinions in the Context of Urban Planning. Technological Forecasting Soc. Change 2017, 118, 195–204. DOI:10.1016/j.techfore.2017.02.020.
  • Yang, L.; Ge, X.; Wan, C.; Yu, F.; Li, Y. Progress and Perspectives in Converting Biogas to Transportation Fuels. Renew. Sust. Energ. Rev. 2014, 40, 1133–1152. DOI:10.1016/j.rser.2014.08.008.
  • Bekkering; J.; Hengeveld; E. J.; van Gemert; W. J. T.; Broekhuis; A. A. Will Implementation of Green Gas Into the Gas Supply be Feasible in the Future? Appl. Energ. 2015, 140, 409–417. DOI:10.1016/j.apenergy.2014.11.071.
  • WBA (World Bioenergy Association). Global bioenergy statistics. 2016. available at http://worldbioenergy.org/uploads/WBA%20Global%20Bioenergy%20Statistics%202016.pdf (Last access January 2015).
  • Capodaglio, A. G.; Callegari; A.; Lopez, M. V. European Framework for the Diffusion of Biogas Uses: Emerging Technologies; Acceptance; Incentive Strategies; and Institutional-Regulatory Support. Sustainability 2016, 8, 298–315. DOI:10.3390/su8040298.
  • Wallquist, L.; L'Orange Seigo, S.; Visschers, V. H. M.; Siegrist, M. Public Acceptance of CCS System Elements: A Conjoint Measurement. Int. J. Greenhouse Gas Control 2012, 6, 77–83. DOI:10.1016/j.ijggc.2011.11.008.
  • Soland, M.; Steimer, N.; Walter, G. Local Acceptance of Existing Biogas Plants in Switzerland. Energy Policy 2013, 61, 802–810. DOI:10.1016/j.enpol.2013.06.111.
  • Hijazi, O.; Munro, S.; Zerhusen, B.; Effenberger, M. Review of Life Cycle Assessment for Biogas Production in Europe. Renewable Sustainable Energy Rev. 2016, 54, 1291–1300. DOI:10.1016/j.rser.2015.10.013.
  • Buratti, C.; Barbanera, M.; Fantozzi, F. Assessment of GHG Emissions of Biomethane from Energy Cereal Crops in Umbria; Italy. Appl. Energy 2013, 108, 128–136. DOI:10.1016/j.apenergy.2013.03.011.
  • Bachmaier, J.; Effenberger, M.; Gronauer, A. Greenhouse Gas Balance and Resource Demand of Biogas Plants in Agriculture. Eng. Life Sci. 2010, 10(6), 560–569. DOI:10.1002/elsc.201000073.
  • Battini, F.; Agostini, A.; Boulamanti, A. K.; Giuntoli, J.; Amaducci, S. Mitigating the Environmental Impacts of Milk Production Via Anaerobic Digestion of Manure: Case Study of a Dairy Farm in the Po Valley. Sci. Total Environ. 2014, 481, 196–208. DOI:10.1016/j.scitotenv.2014.02.038.
  • Kaparaju, P.; Rintala, J. Mitigation of Greenhouse Gas Emissions by Adopting Anaerobic Digestion Technology on Dairy; Sow and Pig Farms in Finland. Renewable Energy 2011, 36, 31–41. DOI:10.1016/j.renene.2010.05.016.
  • Mikosz, J. Analysis of Greenhouse Gas Emissions and the Energy Balance in a Model Municipal Wastewater Treatment Plant. Desalination Water Treat. 2016, 57(59), 28551–28559. DOI:10.1080/19443994.2016.1192491.
  • Nielsen, M.; Nielsen, O. K.; Plejdrup, M. Danish emission inventory for stationary combustion plants. Scientific Report from DCE – Danish Centre for Environment and Energy; No. 102; 2014. Available at http://dce2.au.dk/pub/SR102.pdf (Last access January 2018).
  • Poeschl, M.; Ward, S.; Owende, P. Environmental Impacts of Biogas Deployment e Part I: Life Cycle Inventory for Evaluation of Production Process Emissions to Air. J. Cleaner Product. 2012, 24, 168–183. DOI:10.1016/j.jclepro.2011.10.039.
  • Simmons, J. E. Nephrotoxicity Resulting from Multiple Chemical Exposures and Chemical Interactions. Toxicology of Chemical Mixtures; Academic Press: San Diego (USA), 1994; pp 335–360.
  • Prasad, S.; Zhao, L.; Gomes, J. Methane and Natural Gas Exposure Limits. Epidemiology 2011, 22(1), S251. DOI:10.1097/01.ede.0000392463.93990.1e.
  • IPCC (International Panel on Climate Change). Climate Change 2013; Contribution to the Fifth Assessment Report of the Working Group I; The Physical Science Basis; Available at http://www.ipcc.ch/report/ar5/wg1/ (Last access January 2018).
  • Carter, M. S.; Hauggard-Nielsen, H.; Heiske, S.; Jensen, M.; Thomsen, S.; Schmidt, J. E.; Johansen, A.; Ambus, P. Consequences of field N2O Emissions for the Environmental Sustainability of Plant-Based Biofuels Produced Within an Organic Farming System. Global Change Biol. (CBG) Bioenergy 2012, 4, 435–452. DOI:10.1111/j.1757-1707.2011.01132.x.
  • Senbayram, M.; Chen, R.; Wienforth, B.; Herrmann, A.; Kage, H.; Mühling, K. H.; Dittert, K. Emission of N2O from Biogas Crop Production Systems in Northern Germany. Bioenerg. Res. 2014, 7, 1223–1236. DOI:10.1007/s12155-014-9456-2.
  • Iordan, C.; Lausselet, C.; Cherubini, F. Life-Cycle Assessment of a Biogas Power Plant with Application of Different Climate Metrics and Inclusion of Near-Term Climate Forcers. J. Environ. Manage. 2016, 184, 517–527. DOI:10.1016/j.jenvman.2016.10.030.
  • Meyer-Aurich, A.; Schattauer, A.; Hellebrand, H. J.; Klauss, H.; Plöchl, M.; Berg, W. Impact of Uncertainties on Greenhouse Gas Mitigation Potential of Biogas Production from Agricultural Resources. Renewable Energy 2012, 37, 277–284. DOI:10.1016/j.renene.2011.06.030.
  • USEPA (United States Environmental Protection Agency). Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills. Office of Research and Development. Report number EPA/600/R-08-116; 2008. Available at: https://www3.epa.gov/ttnchie1/ap42/ch02/draft/db02s04.pdf (Last access January 2018).
  • Kristensen, P. G.; Jensen, J. K.; Nielsen, M.; Illerup, J. B. Emission Factors for Gas Fired CHP units <25 MW. Danish Gas Technology Centre and National Environmental Research Institute of Denmark. 2004. Available at http://www.dgc.eu/sites/default/files/filarkiv/documents/C0402_emissions_factors.pdf (Last access January 2018).
  • NSCA (National Society for Clean Air and Environment of United Kingdom). Comparison of Emissions from Waste Management Options; BN2 9QA; Brighton, UK, 2002.
  • Petracchini, F.; Romagnoli, P.; Paciucci, L.; Vichi, F.; Imperiali, A.; Paolini, V.; Liotta, F.; Cecinato, A. Influence of Transport from Urban Sources and Local Biomass Combustion on the Air Quality of a Mountain Area. Environ. Sci. Pollut. Res. 2017, 24(5), 4741–4754. DOI:10.1007/s11356-016-8111-1.
  • Beylot, A.; Vaxelaire, S.; Zdanevitch, I.; Auvinet, N.; Villeneuve, J. Life Cycle Assessment of Mechanical Biological Pre-Treatment of Municipal Solid Waste: A Case study. Waste Manage. 2015, 39, 287–294. DOI:10.1016/j.wasman.2015.01.033.
  • Carreras-Sospedra, M.; Williams, R.; Dabdub, D. Assessment of the Emissions and Air Quality Impacts of Biomass and Biogas Use in California. J. Air Waste Manage. Assoc. 2016, 66(2), 134–150. DOI:10.1080/10962247.2015.1087892.
  • Rasi, S.; Veijanen, A.; Rintala, J. Trace Compounds of Biogas from Different Biogas Production Plants. Energy 2007, 32, 1375–1380. DOI:10.1016/j.energy.2006.10.018.
  • Salazar Gomez, J. I.; Lohmann, H.; Krassowski, J. Determination of Volatile Organic Compounds from Biowaste and Cofermentation Biogas Plants by Single-Sorbent Adsorption. Chemosphere 2016, 153, 48–57. DOI:10.1016/j.chemosphere.2016.02.128.
  • Smet, E.; Van Langenhove, H.; De Bo, I. The Emission of Volatile Compounds During the Aerobic and the Combined Anaerobic/Aerobic Composting Of Biowaste. Atmos. Environ. 1999, 33, 1295–1303. DOI:10.1016/S1352-2310(98)00260-X.
  • Gallego, E.; Roca, F. J.; Perales, J. F.; Guardino, X.; Gadea, E.; Garrote, P. Impact of Formaldehyde and VOCs from Waste Treatment Plants Upon the Ambient Air Nearby an Urban Area (Spain). Sci. Total Environ. 2016, 568, 369–380. DOI:10.1016/j.scitotenv.2016.06.007.
  • Borjesson, P.; Berglund, M. Environmental Systems Analysis of Biogas Systems-Part I: Fuel-Cycle Emissions. Biomass Bioenergy 2006, 30, 469–485. DOI:10.1016/j.biombioe.2005.11.014.
  • Boulamanti, A. K.; Donida Maglio, S.; Giuntoli, J.; Agostini, A. Influence of Different Practices on Biogas Sustainability. Biomass Bioenergy 2013, 53, 149–161. DOI:10.1016/j.biombioe.2013.02.020.
  • Sommer, S. G. Ammonia volatilization from farm tanks containing anaerobically digestedanimal slurry. Atmos. Environ. 1997, 31, 863–868. DOI:10.1016/S1352-2310(96)00250-6.
  • Clarke, K.; Romain, A. C.; Locoge, N.; Redon, N. Application of Chemical Mass Balance Methodology to Identify the Different Sources Responsible for the Olfactory Annoyance at a Receptor-Site. Chem. Eng. Trans. 2012, 30, 79–84.
  • Liu, J.; Wang, X.; Nie, X.; Li, R.; Song, M. In-Situ Emission Characteristics of Odorous Gases from two Food Waste Processing Plants. J. Mater. Cycles Waste Manag. 2013, 15, 510–515. DOI:10.1007/s10163-013-0174-1.
  • Clemens, J.; Trimborn, M.; Weiland, P.; Amon, B. Mitigation of Greenhouse Gas Emissions by Anaerobic Digestion of Cattle Slurry. Agric. Ecosyst. Environ. 2006, 112, 171–177. DOI:10.1016/j.agee.2005.08.016.
  • Möller, K. Effects of Anaerobic Digestion on Soil Carbon and Nitrogen Turnover; N Emissions; and Soil Biological Activity. A review. Agron. Sustain. Dev. 2015, 35, 1021–1041. DOI:10.1007/s13593-015-0284-3.
  • Tambone, F.; Genevini, P.; D'Imporzano, G.; Adani, F. Assessing Amendment Properties of Digestate by Studying the Organic Matter Composition and the Degree of Biological Stability During the Anaerobic Digestion of the Organic Fraction of MSW. Bioresour. Technol. 2009, 100, 3140–3142. DOI:10.1016/j.biortech.2009.02.012.
  • Eickenscheidt, T.; Freibauer, A.; Heinichen, J.; Augustin, J.; Drösler, M. Short-Term Effects of Biogas Digestate and Cattle Slurry Application on Greenhouse Gas Emissions Affected by N Availability from Grasslands on Drained Fen Peatlands and Associated Organic Soils. Biogeosciences 2014, 11, 6187–6207. DOI:10.5194/bg-11-6187-2014.
  • Oshita; K.; Okumura, T.; Takaoka, M.; Fujimori, T.; Appels, L.; Dewil, R. Methane and Nitrous Oxide Emissions Following Anaerobic Digestion of Sludge in Japanese Sewage Treatment Facilities. Bioresour. Technol. 2014, 171, 175–181. DOI:10.1016/j.biortech.2014.08.081.
  • Clemens, J.; Huschka, A. The Effect of Biological Oxygen Demand of Cattle Slurry and Soil Moisture on Nitrous Oxide Emissions. Nutr. Cycling Agroecosyst. 2001, 59, 193–198. DOI:10.1023/A:1017562603343.
  • Oenema, O.; Wrage, N.; Velthof, G. L.; van Groenigen, J. W.; Dolfing, J.; Kuikman, P. J. Trends in Global Nitrous Oxide Emissions from Animal Production Systems. Nutr. Cycl. Agroecosys. 2005, 72, 51–65. DOI:10.1007/s10705-004-7354-2.
  • Möller, K.; Stinner, W. Effects of Different Manuring Systems with and Without Biogas Digestion on Soil Mineral Nitrogen Content and Gaseous Nitrogen Losses (Ammonia; Nitroux Oxide). Europ. J. Agronomy 2009, 30, 1–16. DOI:10.1016/j.eja.2008.06.003.
  • Singla, A.; Inubushi, K. Effect of Biogas Digested Liquid on CH4 and N2O Flux in Paddy Ecosystem. J. Integr. Agric. 2014, 13(3), 635–640. DOI:10.1016/S2095-3119(13)60721-2.
  • Win, A. T.; Toyota, K.; Win, K. T.; Motobayashi, T.; Ookawa, T.; Hirasawa, T.; Chen, D.; Lu, J. Effect of Biogas Slurry Application on CH4 and N2O Emissions; Cu and Zn Uptakes by Whole Crop Rice in a Paddy Field in Japan. Soil Sci. Plant Nutr. 2014, 60, 411–422. DOI:10.1080/00380768.2014.899886.
  • Ghoneim, A.; Ueno, H.; Ebin, A.; Asagi, N.; El Darag, A. Analysis of Nitrogen Dynamics and Fertilizer use Efficiency Using the Nitrogen 15 Isotope Dilution Method Following the Application of Biogas Slurry or Chemical Fertilizer. Int. J. Soil Sci. 2008, 3(1), 11–19. DOI:10.3923/ijss.2008.11.19.
  • VTT (Technical Research Centre of Finland). Greenhouse gas emissions and removals in Finland. 15 March 2006. Available at https://tilastokeskus.fi/tup/khkinv/fin_nir_2006.pdf.
  • Matsunaka, T.; Sawamoto, T.; Ishimura, H.; Takakura, K.; Takekawa, A. Efficient use of Digested Cattle Slurry from Biogas Plant with Respect to Nitrogen Recycling in Grassland. Int. Cong. Ser. 2006, 1293, 242–252. DOI:10.1016/j.ics.2006.03.016.
  • Johansen, A.; Carter, M. S.; Jensen, E. S.; Hauggard-Nielsen, H.; Ambus, P. Effects of Digestate from Anaerobically Digested Cattle Slurry and Plant Materials on Soil Microbial Community and Emission of CO2 and N2O. Appl. Soil Ecol. 2013, 63, 36–44. DOI:10.1016/j.apsoil.2012.09.003.
  • Riva, C.; Orzi, V.; Carozzi, M.; Acutis, M.; Boccasile, G.; Lonati, S.; Tambone, F.; D'Imporzano, G.; Adani, F. Short-Term Experiments in Using Digestate Products as Substitutes for Mineral (N) Fertilizer: Agronomic Performance; Odours; and Ammonia Emission Impacts. Sci. Total Environ. 2016, 547, 206–214. DOI:10.1016/j.scitotenv.2015.12.156.
  • Govasmark, E.; Stäb, J.; Holen, B.; Hoornstra, D.; Nesbakk, T.; Salkinoja-Salonen, M. Chemical and Microbiological Hazards Associated with Recycling of Anaerobic Digested Residue Intended for Agricultural Use. Waste Manag. 2011, 12, 2577–2583. DOI:10.1016/j.wasman.2011.07.025.
  • Suominen, K.; Verta, M.; Marttinen, S. Hazardous Organic Compounds in Biogas Plant end Products-Soil Burden and Risk to Food Safety. Sci. Total Environ. 2014, 491, 192–199. DOI:10.1016/j.scitotenv.2014.02.036.
  • Filidei, S.; Masciandaro, G.; Ceccanti, B. Anaerobic Digestion of Olive Oil Mill Effluents: Evaluation of Wastewater Organic Load and Phytotoxicity Reduction. Water Air Soil Pollut. 2003, 145, 79–94. DOI:10.1023/A:1023619927495.
  • Salati, S.; D'Imporzano, G.; Panseri, S.; Pasquale, E.; Adani, F. Degradation of Aflatoxin B1 During Anaerobic Digestion and Its Effect on Process Stability. Int. Biodeterior. Biodegradation 2014, 94, 19–23. DOI:10.1016/j.ibiod.2014.06.011.
  • Erisman, J. W.; Schaap, M. The Need for Ammonia Abatement with Respect to Secondary PM Reductions in Europe. Environ. Pollut. 2004, 129, 159–163. DOI:10.1016/j.envpol.2003.08.042.
  • Harrison, R. M.; Jones, A. M.; Lawrence, R. G. Major Component Composition of PM10 and PM2.5 from Roadside and Urban Background Sites. Atmos. Environ. 2004, 38(27), 4531–4538. DOI:10.1016/j.atmosenv.2004.05.022.
  • Ravina, M.; Genon, G. Global and Local Emissions of a Biogas Plant Considering the Production of Biomethane as an Alternative End-Use Solution. J. Cleaner Product. 2015, 102, 115–126. DOI:10.1016/j.jclepro.2015.04.056.
  • Beylot, A.; Villeneuve, J.; Bellenfant, G. Life Cycle Assessment of Landfill Biogas Management: Sensitivity to Diffuse and Combustion Air Emissions. Waste Manage. 2013, 33, 401–411. DOI:10.1016/j.wasman.2012.08.017.
  • Pertl, A.; Mostbauer, P.; Obersteiner, G. Climate Balance of Biogas Upgrading Systems. Waste Manage. 2010, 30, 92–99. DOI:10.1016/j.wasman.2009.08.011.
  • Petracchini, F.; Paolini, V.; Liotta, F.; Paciucci; L.; Facci, E. Vacuum Swing Adsorption on Natural Zeolites from Tuffs in a Prototype Plant. Environ. Prog. Sustainable Dev. 2017b, 36(3), 887–894. DOI:10.1002/ep.12530.
  • Starr, K.; Gabarrell, X.; Villalba, G.; Talens Peiro, L.; Lombardi, L. Potential CO2 Savings Through Biomethane Generation from Municipal Waste Biogas. Biomass Bioenergy 2014, 62, 8–16. DOI:10.1016/j.biombioe.2014.01.023.
  • Nilsson Påledal, S.; Arrhenius, K.; Moestedt, J.; Engelbrektsson, J.; Stensen, K. Characterisation and Treatment of VOCs in Process Water from Upgrading Facilities for Compressed Biogas (CBG). Chemosphere 2016, 145, 424–430. DOI:10.1016/j.chemosphere.2015.11.083.
  • EMEP/EEA (European Monitoring and Evaluation Programme; European Environmental Agency). Emission inventory guidebook 2016. Section 1.A.3.b.iii Heavy-duty vehicles including buses. Available at https://www.eea.europa.eu/publications/emep-eea-guidebook-2016 (Accessed January 2018).
  • Semple, S.; Apsley, A.; Wushishi, A.; Smith, J. Commentary: Switching to Biogas What Effect Could It Have on Indoor Air Quality and Human Health? Biomass Bioenergy 2014, 10, 125–129. DOI:10.1016/j.biombioe.2014.01.054.