Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 53, 2018 - Issue 12
411
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Preparation of carbon nanofibers/tubes using waste tyres pyrolysis oil and coal fly ash derived catalyst

, , , , &
Pages 1115-1122 | Received 09 Mar 2018, Accepted 28 Apr 2018, Published online: 29 May 2018

References

  • Prasek, J.; Drbohlavova, J.; Chomoucka, J.; Hubalek, J.; Jasek, J. O.; Adam, V.; Kizek, R. Methods for Carbon Nanotubes Synthesis—Review. J. Mater. Chem. 2011, 21(40), 15872–15884. DOI: 10.1039/c1jm12254a.
  • Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Joo, S. W. Carbon Nanotubes: Properties, Synthesis, Purification, and Medical Applications. J. Mater. Chem. 2014, 9(1), 393–415.
  • Demczyk, B. G.; Wang, Y. M.; Cumings, J.; Hetman, M.; Han, W.; Zettl, A.; Ritchie, R. O. Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes. Mater. Sci. Eng. A. 2002, 334(1), 173–178. DOI: 10.1016/S0921-5093(01)01807-X.
  • Thostenson, E. T.; Ren, Z.; Chou, T. W. Advances in the Science and Technology of Carbon Nanotubes and their Composites: A Review. Compos. Sci. Technol. 2001, 61(13), 1899–1912. DOI: 10.1016/S0266-3538(01)00094-X.
  • Kaushik, B. K.; Majumder, M. K. Carbon Nanotube: Properties and Applications. Carbon Nanotube Based VLSI Interconnects, 1st Ed.; Springer Briefs in Applied Sciences and Technology, 2015. DOI: 10.1007/978-81-322-2047-3.
  • Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A.; Souza Filho, A. G.; Saito, R. Raman Spectroscopy on Isolated Single Wall Carbon Nanotubes. Carbon 2002, 40(12), 2043–2061. DOI: 10.1016/S0008-6223(02)00066-0.
  • Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, R. A. Raman Spectroscopy of Carbon Nanotubes. Phys. Rep. 2005, 409(2), 47–99. DOI: 10.1016/j.physrep.2004.10.006.
  • Lima, M. D.; Bonadiman, R.; De Andrade, M. J.; Toniolo, J.; Bergmann, C. P. Synthesis of Multi-Walled Carbon Nanotubes by Catalytic Chemical Vapor Deposition Using Cr2−xFexO3 as Catalyst. Diamond Relat. Mater. 2006, 15(10), 1708–1713. DOI: 10.1016/j.diamond.2006.02.009.
  • Martin-Gullon, I.; Vera, J.; Conesa, J. A.; González, J. L.; Merino, C. Differences Between Carbon Nanofibers Produced Using Fe and Ni Catalysts in a Floating Catalyst Reactor. Carbon 2006, 44(8), 1572–1580. DOI: 10.1016/j.carbon.2005.12.027.
  • Dervishi, E.; Li, Z.; Xu, Y.; Saini, V.; Biris, A.R; Lupu, D.; Biris, A. S. Carbon Nanotubes: Synthesis, Properties, and Applications. Part. Sci. Technol. 2009, 27(2), 107–125. DOI: 10.1080/02726350902775962.
  • Zhou, W.; Han, Z.; Wang, J.; Zhang, Y.; Jin, Z.; Sun, X.; Li, Y. Copper Catalyzing Growth of Single-Walled Carbon Nanotubes on Substrates. Nano Lett. 2006, 6(12), 2987–2990. DOI: 10.1021/nl061871v.
  • Singh, C.; Shaffer, M. S.; Windle, A. H. Production of Controlled Architectures of Aligned Carbon Nanotubes by an Injection Chemical Vapour Deposition Method. Carbon 2003, 41(12), 359–368. DOI: 10.1016/S0008-6223(02)00314-7.
  • Wang, S. Application of Solid Ash Based Catalysts in Heterogeneous Catalysis. Environ. Sci. Technol. 2008, 42(19), 7055–7063. DOI: 10.1021/es801312m.
  • Magrez, A.; Seo, J. W.; Smajda, R.; Mionić, M.; Forró, L. Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth. Mater 2010, 3(11), 4871–4891. DOI: 10.3390/ma3114871.
  • Suda, Y.; Maruyama, K.; Iida, T.; Takikawa, H.; Ue, H.; Shimizu, K.; Umeda, Y. High-Yield Synthesis of Helical Carbon Nanofibers Using Iron Oxide Fine Powder as a Catalyst. Cryst 2015, 5(1), 47–60. DOI: 10.3390/cryst5010047.
  • De Jong, K. P.; Geus, J. W. Carbon Nanofibers: Catalytic Synthesis and Applications. Cat. Rev. Sci. Eng. 2000, 42(4), 481–510. DOI: 10.1081/CR-100101954.
  • Park, C.; Baker, R. T. K. Carbon Deposition on Iron–Nickel During Interaction with Ethylene–Hydrogen Mixtures. J. Catal. 1998, 179(2), 361–374. DOI: 10.1006/jcat.1998.2226.
  • Yu, Z.; Chen, D.; Rønning, M.; Tøtdal, B.; Vrålstad, T.; Ochoa-Fernández, E.; Holmen, A. Large-Scale Synthesis of Carbon Nanofibers on Ni-Fe-Al Hydrotalcite Derived Catalysts: II: Effect of Ni/Fe Composition on CNF Synthesis from Ethylene and Carbon Monoxide. Appl. Catal. A. 2008, 338(1), 147–158. DOI: 10.1016/j.apcata.2008.01.002.
  • Carneiro, O. C.; Rodriguez, N. M.; Baker, R. T. K. Growth of Carbon Nanofibers from the Iron–Copper Catalyzed Decomposition of CO/C2H4/H2 Mixtures. Carbon 2005, 43(11), 2389–2396. DOI: 10.1016/j.carbon.2005.04.022.
  • Gupta, D. K.; Rai, U. N.; Tripathi, R. D.; Inouhe, M. Impacts of Fly-Ash on Soil and Plant Responses. J. Plant Res. 2002, 115(6), 401–409. DOI: 10.1007/s10265-002-0057-3.
  • Jala, S.; Goyal, D. Fly Ash as a Soil Ameliorant for Improving Crop Production—A Review. Bioresour. Technol. 2006, 97(9), 1136–1147. DOI: 10.1016/j.biortech.2004.09.004.
  • Franus, W.; Wiatros-Motyka, M. M.; Wdowin, M. Coal Fly Ash as a Resource for Rare Earth Elements. Environ. Sci. Pollut. Res. 2015, 22(12), 9464–9474. DOI: 10.1007/s11356-015-4111-9.
  • Qu, W.; Zhou, Q.; Wang, Y. Z.; Zhang, J.; Lan, W. W.; Wu, Y. H.; Wang, D. Z. Pyrolysis of Waste Tire on ZSM-5 Zeolite with Enhanced Catalytic Activities. Polym. Degrad. Stab. 2006, 91(10), 2389–2395. DOI: 10.1016/j.polymdegradstab.2006.03.014.
  • Williams, P. T. Pyrolysis of Waste Tyres: A Review. Waste Manage. 2013, 33(8), 1714–1728. DOI: 10.1016/j.wasman.2013.05.003.
  • Hintsho, N.; Shaikjee, A.; Masenda, H.; Naidoo, D.; Billing, D.; Franklyn, P.; Durbach, S. Direct Synthesis of Carbon Nanofibers from South African Coal Fly Ash. Nanoscale Res. Lett. 2014, 9(1), 1–11. DOI: 10.1186/1556-276X-9-387.
  • Yasui, A.; Kamiya, Y.; Sugiyama, S.; Ono, S.; Noda, H.; Ichikawa, Y. Synthesis of Carbon Nanotubes on Fly Ashes by Chemical Vapor Deposition Processing. IEEJ Trans. Electr. Electron Eng. 2009, 4(6), 787–789. DOI: 10.1002/tee.20481.
  • Yadav, V. K.; Fulekar, M. H. Isolation and Charcterization of Iron Nanoparticles From Coal Fly Ash From Gandhinagar (Gujarat) Thermal Power Plant (A Mechanical Method of Isolation). Int. J. Eng. Res. Technol. (IJERT). 2014, 3(6), 471–477.
  • Mahlaba, J. S.; Kearsley, E. P.; Kruger, R. A. Physical, Chemical and Mineralogical Characterisation of Hydraulically Disposed Fine Coal Ash from SASOL Synfuels. Fuel 2011, 90(7), 2491–2500. DOI: 10.1016/j.fuel.2011.03.022.
  • San Miguel, G.; Aguado, J.; Serrano, D. P.; Escola, J. M. Thermal and Catalytic Conversion of Used Tyre Rubber and Its Polymeric Constituents Using Py-GC/MS. Appl. Catal. B. 2006, 64(3), 209–219. DOI: 10.1016/j.apcatb.2005.12.004.
  • Sahoo, P. K.; Kim, K.; Powell, M. A.; Equeenuddin, S. M. Recovery of Metals and Other Beneficial Products from Coal Fly Ash: A Sustainable Approach for Fly Ash Management. Int. J. Coal Sci. Technol. 2016, 3(3), 267–283. DOI: 10.1007/s40789-016-0141-2.
  • Luhrs, C. C.; Moberg, M.; Maxson, A.; Brewer, L.; Menon, S. IF-WS2/Nanostructured Carbon Hybrids Generation and their Characterization. Inorg 2014, 2(2), 211–232. DOI: 10.3390/inorganics2020211.
  • Liang, C.; Xia, W.; Soltani-Ahmadi, H.; Schlüter, O.; Fischer, R. A.; Muhler, M. The Two-Step Chemical Vapor Deposition of Pd (allyl) Cp as an Atom-Efficient Route to Synthesize Highly Dispersed Palladium Nanoparticles on Carbon Nanofibers. Chem. Commun. 2005, 2, 282–284. DOI: 10.1039/B412150C.
  • Cao, A.; Zhu, H.; Zhang, X.; Li, X.; Ruan, D.; Xu, C.; Wu, D. Hydrogen Storage of Dense-Aligned Carbon Nanotubes. Chem. Phys. Lett. 2001, 342(5), 510–514. DOI: 10.1016/S0009-2614(01)00619-4.
  • Cao, A.; Xu, C.; Liang, J.; Wu, D.; Wei, B. X-Ray Diffraction Characterization on the Alignment Degree of Carbon Nanotubes. Chem. Phys. Lett. 2001, 344(1), 13–17. DOI: 10.1016/S0009-2614(01)00671-6.
  • Wang, X.; Li, Q.; Pan, H.; Lin, Y.; Ke, Y.; Sheng, H.; Wu, G. Size-Controlled Large-Diameter and Few-Walled Carbon Nanotube Catalysts for Oxygen Reduction. Nanoscale 2015, 7(47), 20290–20298. DOI: 10.1039/C5NR05864C.
  • Sun, Z.; Liu, Z.; Wang, Y.; Han, B.; Du, J.; Zhang, J. Fabrication and Characterization of Magnetic Carbon Nanotube Composites. J. Mater. Chem. 2005, 15(42), 4497–4501. DOI: 10.1039/b509968d.
  • Siddheswaran, R.; Manikandan, D.; Avila, R. E.; Jeyanthi, C. E.; Mangalaraja, R. V. Formation of Carbon Nanotube Forest Over Spin-Coated Fe2O3 Reduced Thin-Film by Chemical Vapor Deposition. Fuller. Nanotub. Car. N. 2015, 23(5), 392–398. DOI: 10.1080/1536383X.2013.866945.
  • Fenelonov, V. B.; Mel'gunov, M. S.; Parmon, V. N. The Properties of Cenospheres and the Mechanism of their Formation During High-Temperature Coal Combustion at Thermal Power Plans. KONA Powder Part. J. 2010, 28, 189–208. DOI: 10.14356/kona.2010017.
  • Ahmaruzzaman, M. A Review on the Utilization of Fly Ash. Prog. Energy Combust. Sci. 2010, 36(3), 327–363. DOI: 10.1016/j.pecs.2009.11.003.
  • Adeniran, B.; Mokaya, R. Compactivation: A Mechanochemical Approach to Carbons with Superior Porosity and Exceptional Performance for Hydrogen and CO2 Storage. Nano Energy. 2015, 16, 173–185. DOI: 10.1016/j.nanoen.2015.06.022.
  • Deck, C. P.; Vecchio, K. Prediction of Carbon Nanotube Growth Success by the Analysis of Carbon–Catalyst Binary Phase Diagrams. Carbon 2006, 44(2), 267–275. DOI: 10.1016/j.carbon.2005.07.023.
  • Salah, N.; Al-Ghamdi, A. A.; Memic, A.; Habib, S. S.; Khan, Z. H. Formation of Carbon Nanotubes from Carbon-Rich Fly Ash: Growth Parameters and Mechanism. Mater. Manuf. Processes. 2015, 31(2), 146–156. DOI: 10.1080/10426914.2015.1025975.
  • Chen, D.; Christensen, K. O.; Ochoa-Fernández, E.; Yu, Z.; Tøtdal, B.; Latorre, N.; Monzón, A.; Holmen, A. Synthesis of Carbon Nanofibers: Effects of Ni Crystal Size during Methane Decomposition. J. Catal. 2005, 229(1), 82–96. DOI: 10.1016/j.jcat.2004.10.017.
  • Salah, N.; Habib, S. S.; Khan, Z. H.; Memic, A.; Nahas, M. N. Growth of Carbon Nanotubes on Catalysts Obtained from Carbon Rich Fly Ash. Dig. J. Nanomater. Biostruct. 2012, 7(3), 1279–1288.
  • Gohier, A.; Ewels, C. P.; Minea, T. M.; Djouadi, M. A. Carbon Nanotube Growth Mechanism Switches From Tip-To Base-Growth with Decreasing Catalyst Particle Size. Carbon 2008, 46(10), 1331–1338. DOI: 10.1016/j.carbon.2008.05.016.
  • Yu, L.; Sui, L.; Qin, Y.; Du, F.; Cui, Z. Catalytic Synthesis of Carbon Nanofibers and Nanotubes by the Pyrolysis of Acetylene with Iron Nanoparticles Prepared Using a Hydrogen-Arc Plasma Method. Mater. Lett. 2009, 63(20), 1677–1679. DOI: 10.1016/j.matlet.2009.05.007.
  • Sinnott, S. B.; Andrews, R.; Qian, D.; Rao, A. M.; Mao, Z.; Dickey, E. C.; Derbyshire, F. Model of Carbon Nanotube Growth Through Chemical Vapor Deposition. Chem. Phys. Lett. 1999, 315(1), 25–30. DOI: 10.1016/S0009-2614(99)01216-6.
  • Kumar, M.; Ando, Y. Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production. J. Nanosci. Nanotechnol. 2010, 10(6), 3739–3758. DOI: 10.1166/jnn.2010.2939.
  • Coville, N. J.; Mhlanga, S. D.; Nxumalo, E. N.; Shaikjee, A. A Review of Shaped Carbon Nanomaterials. S. Afri. J. Sci. 2011, 107(3–4), 1–15.
  • Plata, D. L.; Meshot, E. R.; Reddy, C. M.; Hart, A. J.; Gschwend, P. M. Multiple Alkynes React with Ethylene to Enhance Carbon Nanotube Synthesis, Suggesting a Polymerization-Like Formation Mechanism. ACS Nano. 2010, 4(12), 7185–7192. DOI: 10.1021/nn101842g.
  • Ngu, L. N.; Wu, H.; Zhang, D. K. Characterization of Ash Cenospheres in Fly Ash from Australian Power Stations. Energy Fuels. 2007, 21(6), 3437–3445. DOI: 10.1021/ef700340k.
  • Lai, H. J.; Lin, M. C. C.; Yang, M. H.; Li, A. K. Synthesis of Carbon Nanotubes Using Polycyclic Aromatic Hydrocarbons as Carbon Sources in an Arc Discharge. Mater. Sci. Eng. C 2001, 16(1), 23–26. DOI: 10.1016/S0928-4931(01)00303-4.
  • Ismagilov, Z. R.; Shalagina, A. E.; Podyacheva, O. Y.; Ischenko, A. V.; Kibis, L. S.; Boronin, A. I.; Buryakov, T. I. Structure and Electrical Conductivity of Nitrogen-Doped Carbon Nanofibers. Carbon 2009, 47(8), 1922–1929. DOI: 10.1016/j.carbon.2009.02.034.
  • Dunens, O. M.; MacKenzie, K. J.; Harris, A. T. Synthesis of Multiwalled Carbon Nanotubes on Fly Ash Derived Catalysts. Environ. Sci. Technol. 2009, 43, 7889–7894. DOI: 10.1021/es901779c.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.