Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 5
461
Views
25
CrossRef citations to date
0
Altmetric
Articles

Evaluation of antibacterial efficacy of sulfur nanoparticles alone and in combination with antibiotics against multidrug-resistant uropathogenic bacteria

, , , , & ORCID Icon
Pages 381-390 | Received 15 Jun 2018, Accepted 01 Dec 2018, Published online: 26 Mar 2019

References

  • Flores-Mireles, A. L.; Walker, J. N.; Caparon, M.; Hultgren, S. J. Urinary Tract Infections: Epidemiology, Mechanisms of Infection and Treatment Options. Nat. Rev. Micro. 2015, 13, 269–284. doi: 10.1038/nrmicro3432.
  • Armbruster, C. E.; Smith, S. N.; Johnson, A. O.; DeOrnellas, V.; Eaton, K. A.; Yep, A.; Mody, L.; Wu, W.; Mobley, H. L. The Pathogenic Potential of Proteus mirabilis Is Enhanced by Other Uropathogens during Polymicrobial Urinary Tract Infection. Infect. Immun. 2017, 85, 00808–008016.
  • Wagenlehner, F. M.; Naber, K. G. A New Way to Prevent Urinary Tract Infections? Lancet Infect. Dis. 2017, 17, 467–468. doi: 10.1016/S1473-3099(17)30107-X.
  • Mody, L.; Juthani-Mehta, M. Urinary Tract Infections in Older Women: A Clinical Review. JAMA. 2014, 311, 844–854.
  • Fatima, S. S.; Mussaed, E. A. Urinary tract infection. In Bacterial Identification and Drug Susceptibility Patterns in Pregnant and Non-Pregnant UTI Patients; Fatima, S.S.; Mussaed, E.A.; Eds.; Springer: Singapore, 2018; pp. 1–22.
  • Pezzani, M. D.; Antinori, S. Introduction to urinary tract infections: An overview on epidemiology, risk factors, microbiology and treatment options. In Imaging and Intervention in Urinary Tract Infections and Urosepsis; Tonolini, M., Eds.; Springer: Cham, 2018; pp. 7–16.
  • Foxman, B.; Brown, P. Epidemiology of Urinary Tract Infections: Transmission and Risk Factors, incidence, and Costs. Infect. Dis. Clin. North Am. 2003, 17, 227–241. doi: 10.1016/S0891-5520(03)00005-9.
  • Pushpalatha, K. S. Urinary Tract Infection and Management. J. Night Nurs. Times. 2008, 4, 28–32.
  • Hotchandani, R.; Aggarwal, K. K. A Review Article on Urinary Tract Infections in Women. Indian J. Clin. Practice. 2012, 24, 187–192.
  • Vasudevan, R. Urinary Tract Infection: An Overview of the Infection and the Associated Risk Factors. JMEN. 2014, 1, 1–15.
  • Manikandan, S.; Ganesapand, S.; Singh, M.; Kumaraguru, A. K. Emergence of Multi-drug Resistance Human Pathogens from Urinary Tract Infection. Curr. Res. Bacteriol. 2011, 4, 9–15. doi: 10.3923/crb.2011.9.15.
  • Tamalli, M.; Sangar, B.; Alghazal, M. A. Urinary Tract Infection during Pregnancy at Al-Khoms, Libya. Int. J. Med. Medical Sci. 2013, 3, 455–459.
  • Venkatesh, R. K.; Prabhu, M. M.; Nandakumar, K.; Pai, K. S. R. Urinary Tract Infection Treatment Pattern of Elderly Patients in a Tertiary Hospital Setup in South India: A Prospective Study. Jyp. 2016, 8, 108–113. doi: 10.5530/jyp.2016.2.9.
  • Choudhury, S. R.; Goswami, A. Supramolecular Reactive Sulphur Nanoparticles: a Novel and Efficient Antimicrobial Agent. J. Appl. Microbiol. 2012, 114, 1–10. doi: 10.1111/j.1365-2672.2012.05422.x.
  • Rai, M.; Ingle, A. P.; Paralikar, P. Sulfur and Sulfur Nanoparticles as Potential Antimicrobials: from Traditional Medicine to Nanomedicine. Expert Rev. Anti. Infect. Ther. 2016, 14, 969–978. doi: 10.1080/14787210.2016.1221340.
  • Deshpande, A. S.; Khomane, B. R.; Vaidya, B. K.; Joshi, R. M.; Harle, A. S.; Kulkarni, B. D. Sulfur Nanoparticles Synthesis and Characterization from H2S Gas, using Novel Biodegradable Iron Chelates in w/o Microemulsion. Nanoscale Res. Lett. 2008, 3, 221–229. doi: 10.1007/s11671-008-9140-6.
  • Chaudhuri, R. G.; Paria, S. Growth Kinetics of Sulfur Nanoparticles in Aqueous Surfactant Solutions. J. Colloid Interface Sci. 2011, 354, 563–569. doi: 10.1016/j.jcis.2010.11.039.
  • Paralikar, P.; Rai, M. Bio-inspired Synthesis of Sulphur Nanoparticles Using Leaf Extract of Four Medicinal Plants with Special Reference to Their Antibacterial Activity. IET Nanobiotechnol. 2018, 12, 25–31. doi: 10.1049/iet-nbt.2017.0079.
  • Paul, S.; Kannan, I.; Jeyakumari, D.; Premavathi, R. K.; Shantha, S. Evaluation of Chromogenic Agar and Direct Antimicrobial Susceptibility Testing in Rapid Diagnosis of Acute Urinary Tract Infection. Int. J. Pharm. Clin. Res. 2015, 7, 333–336.
  • Birla, S. S.; Tiwari, V. V.; Gade, A. K.; Ingle, A. P.; Yadav, A. P.; Rai, M. K. Fabrication of Silver Nanoparticles by Phoma glomerata and Its Combined Effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett. Appl. Microbiol 2009, 48, 173–179. doi: 10.1111/j.1472-765X.2008.02510.x.
  • Prema, P.; Iniya, P. A.; Immanuel, G. Microbial Mediated Synthesis, characterization, antibacterial and Synergistic Effect of Gold Nanoparticles Using Klebsiella pneumoniae (MTCC-4030). RSC Adv. 2016, 6, 4601–4607. doi: 10.1039/C5RA23982F.
  • Farajnia, S.; Alikhani, M. Y.; Ghotaslou, R.; Naghili, B.; Nakhlband, A. Causative Agents and Antimicrobial Susceptibilities of Urinary Tract Infections in the Northwest of Iran. Int. J. Infect Dis. 2009, 13, 140–144. doi: 10.1016/j.ijid.2008.04.014.
  • Nerurkar, A.; Solanky, P.; Naik, S. S. Bacterial Pathogens in Urinary Tract Infection and Antibiotic Susceptibility Pattern. J. Pharm. Biomed. Sci. 2012, 21, 1–3.
  • Price, T. K.; Hilt, E. E.; Dune, T. J.; Mueller, E. R.; Wolfe, A. J.; Brubaker, L. Urine Trouble: should we Think Differently about UTI? Int. Urogynecol. J. 2018, 29, 205–210. doi: 10.1007/s00192-017-3528-8.
  • Mittal, R.; Aggarwal, S.; Sharma, S.; Chhibber, S.; Harjai, K. Urinary Tract Infections Caused by Pseudomonas aeruginosa: A Minireview. J. Infect. Public Health. 2009, 2, 101–111. doi: 10.1016/j.jiph.2009.08.003.
  • Bitsori, M.; Maraki, S.; Koukouraki, S.; Galanakis, E. Pseudomonas aeruginosa Urinary Tract Infection in Children: risk Factors and Outcomes. J. Urol. 2012, 187, 260–264. doi: 10.1016/j.juro.2011.09.035.
  • Akoachere, J.-F. T. K.; Yvonne, S.; Akum, N. H.; Seraphine, E. N. Etiologic Profile and Antimicrobial Susceptibility of Community-acquired Urinary Tract Infection in Two Cameroonian Towns. BMC Res. Notes 2012, 5, 219–227. doi: 10.1186/1756-0500-5-219.
  • Nzalie, R. N.; Gonsu, H. K.; Koulla-Shiro, S. Bacterial Etiology and Antibiotic Resistance Profile of Community-acquired Urinary Tract Infections in a Cameroonian City. Int. J. Microbiol. 2016, 2016, 1–6. doi: 10.1155/2016/3240268.
  • Kahlmeter, G.; Odén Poulsen, H. Antimicrobial Susceptibility of Escherichia coli from Community-acquired Urinary Tract Infections in Europe: The ECO·SENS Study Revisited. Int. J. Antimicrobial Agents. 2012, 39, 45–51. doi: 10.1016/j.ijantimicag.2011.09.013.
  • Mishra, M. P.; Sarangi, R.; Padhy, R. N. Prevalence of Multidrug Resistant Uropathogenic Bacteria in Pediatric Patients of a Tertiary Care Hospital in Eastern India. J. Infect. Public Health. 2016, 9, 308–314. doi: 10.1016/j.jiph.2015.10.002.
  • Olorunmola, F. O.; Kolawole, D. O.; Lamikanra, A. Antibiotic Resistance and Virulence Properties in Escherichia coli Strains from Cases of Urinary Tract Infections. African J. Infect. Dis. 2013, 7, 1–7.
  • Awwad, A. M.; Salem, N. M.; Abdeen, A. O. Novel Approach for Synthesis Sulfur (S-NPs) nanoparticles Using Albizia julibrissin Fruits Extract. Aml. 2015, 6, 432–435. doi: 10.5185/amlett.2015.5792.
  • Suryavanshi, P.; Pandit, R.; Gade, A.; Derita, M.; Zachino, S.; Rai, M. Colletotrichum sp. mediated Synthesis of Sulphur and Aluminium Oxide Nanoparticles and Its in Vitro Activity against Selected Food-borne Pathogens. LWT – Food Sci. Technol. 2017, 81, 188–194. doi: 10.1016/j.lwt.2017.03.038.
  • Składanowski, M.; Wypij, M.; Laskowski, D.; Golińska, P.; Dahm, H.; Rai, M. Silver and Gold Nanoparticles Synthesized from Streptomyces sp. isolated from Acid Forest Soil with Special Reference to Its Antibacterial Activity against Pathogens. J. Clust. Sci. 2017, 28, 59–79. doi: 10.1007/s10876-016-1043-6.
  • Shah, R.; Eldridge, D.; Palombo, E.; Harding, I. Lipid Nanoparticles: Synthesis, Production and Stability. Springer: Cham, Heidelberg, New York, Dordrecht, London. 2015; p. 105.
  • Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.-E.; Benoit, J.-P. Physico-chemical Stability of Colloidal Lipid Particles. Biomaterials. 2003, 24, 4283–4300. doi: 10.1016/S0142-9612(03)00331-4.
  • Wu, L.; Zhang, J.; Watanabe, W. Physical and Chemical Stability of Drug Nanoparticles. Adv. Drug Deliv. Rev. 2011, 63, 456–469.
  • Mitri, K.; Shegokar, R.; Gohla, S.; Anselmi, C.; Müller, R. Lipid Nanocarriers for Dermal Delivery of Lutein: Preparation, characterization, stability and Performance. Int. J. Pharm. 2011, 414, 267–275. 2011, doi: 10.1016/j.ijpharm.2011.05.008.
  • Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Nanostructured Lipid Carriers (NLC): a Potential Delivery System for Bioactive Food Molecules. Innov. Food Sci. Emerg. Technol. 2013, 19, 29–43. doi: 10.1016/j.ifset.2013.03.002.
  • Bunjes, H.; Siekmann, B. Manufacture, Characterization, and Applications of Solid Lipid Nanoparticles as Drug Delivery Systems. Microencapsulation: Methods and Industrial Applications. Drugs and the Pharmaceutical Sciences. CRC Press: New York, 2005.; 213–268.
  • Choudhury, S. R.; Roy, S.; Goswami, A.; Basu, S. Polyethylene Glycol-stabilized Sulphur Nanoparticles: an Effective Antimicrobial Agent against Multidrug-resistant Bacteria. J. Antimicrob. Chemother. 2012, 67, 1134–1137. doi: 10.1093/jac/dkr591.
  • Rathod, D.; Golinska, P.; Wypij, M.; Dahm, H.; Rai, M. A New Report of Nocardiopsis valliformis Strain OT1 from Alkaline Lonar Crater of India and Its Use in Synthesis of Silver Nanoparticles with Special Reference to Evaluation of Antibacterial Activity and Cytotoxicity. Med. Microbiol. Immunol. 2016, 205, 435–447. doi: 10.1007/s00430-016-0462-1.
  • Thirumurugan, G.; Seshagiri Rao, J. V. L. N.; Dhanaraju, M. D. Elucidating Pharmacodynamics Interaction of Silver Nanoparticle Topical Deliverable Antibiotics. Scientific Rep. 2016, 6, 29982.
  • Wypij, M.; Czarnecka, J.; Świecimska, M.; Dahm, H.; Rai, M.; Golinska, P. Synthesis, characterization and Evaluation of Antimicrobial and Cytotoxic Activities of Biogenic Silver Nanoparticles Synthesized from Streptomyces xinghaiensis OF1 Strain. World J. Microbiol. Biotechnol. 2018, 34, 23–35.
  • Abreu, A. C.; McBain, A. J.; Simoes, M. Plants as Sources of New Antimicrobials and Resistance-modifying Agents. Nat. Prod. Rep. 2012, 29, 1007–1021.
  • Halder, S.; Yadav, K. K.; Sarkar, R.; Mukherjee, S.; Saha, P.; Halder, S.; Karmakar, S.; Sen, T. Alteration of Zeta Potential and Membrane Permeability in Bacteria: A Study with Cationic Agents. Springer Plus. 2015, 4, 672.
  • Arakha, M.; Saleem, M.; Mallick, B. C.; Jha, S. The Effects of Interfacial Potential on Antimicrobial Propensity of ZnO Nanoparticle. Sci. Rep. 2015, 5, 1–10.
  • Ahmad, A.; Wei, Y.; Syed, F.; Tahir, K.; Rehman, A. U.; Khan, A.; Ullah, S.; Yuan, Q. The Effects of Bacteria-nanoparticles Interface on the Antibacterial Activity of Green Synthesized Silver Nanoparticles. Microb. Pathog. 2017, 102, 133–142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.