Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 5
214
Views
0
CrossRef citations to date
0
Altmetric
Articles

Mitigation of greenhouse gases (CO2) generated in the anaerobic digestion of physicochemical sludges using airlift photobioreactors operated with Chlorella spp.

, , , ORCID Icon &
Pages 427-434 | Received 30 May 2018, Accepted 17 Dec 2018, Published online: 19 Jan 2019

References

  • Zhou, W.; Wang, J.; Chen, P.; Ji, C.; Kang, Q.; Lu, B.; Li, K.; Liu, J.; Ruan, R. Bio-Mitigation of Carbón Dioxide Using Microalgal Systems: Advances and Perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1163–1175. DOI: 10.1016/j.rser.2017.03.065.
  • López, L. A.; Martínez, S.; Corte, G.; Méndez, J. M. Influence of Organic Loading Rate on Methane Production in a CSTR from Physicochemical Sludge Generated in a Poultry Slaughterhouse. J. Environ. Sci. Health A 2014, 49, 1710–1717.
  • Yuan-Chen, X.; Vinh-Thang, H.; Avalos-Ramirez, A.; Rodrigue, D.; Kaliaguine, S. Membrane Gas Separation Technologies for Biogas Upgrading. Rsc Adv. 2015, 5, 24399–24448. DOI: 10.1039/C5RA00666J.
  • Shabnam, S.; R. G. Development of Photobioreactors for Improvement of Algal Biomass Production. Int. J. Scientif. Res. 2015, 50, 324–329.
  • Siddiqui, S.; Rameshaiah, G. N.; Kavya, G. Development of Photobioreactors for Improvement of Algal Biomass Production. Int. J. Scientif. Res. 2015, 4, 220–225.
  • Ward, A. J.; Lewis, D. M.; Green, F. B. Anaerobic Digestion of Algae Biomass: A Review. Algal Res. 2014, 5, 204–214. DOI: 10.1016/j.algal.2014.02.001.
  • Huang, Q.; Jiang, F.; Wang, L.; Yang, C. Design of Photobioreactors for Mass Cultivation of Photosynthetic Organisms. Engineering 2017, 3, 318–329. DOI: 10.1016/J.ENG.2017.03.020.
  • Raeesossadati, M. J.; Ahmadzadeh, H.; McHenry, M. P.; Moheimani, N. R. CO2 Bioremediation by Microalgae in Photobioreactors: Impacts of Biomass and CO2 Concentrations, light, and Temperature. Algal Resour. 2014, 6, 78–85. DOI: 10.1016/j.algal.2014.09.007.
  • Da Silva Vaz, B.; Costa, J. A. V.; Greque de Morais, M. Innovative Nanofiber Technology to Improve Carbon Dioxide Biofixation in Microalgae Cultivation. Bioresour. Technol. 2018.
  • Da Neves, F.; de, F.; Hoinaski, L.; Rörig, L. R.; Derner, R. B.; de Melo Lisboa, H. Carbon Biofixation and Lipid Composition of an Acidophilic Microalga Cultivated on Treated Wastewater Supplied with Different CO2 Levels. Environ. Technol. 2018. DOI: 10.1080/09593330.2018.1471103.
  • Duarte, J. H.; de Morais, E. G.; Radmann, E. M.; Costa, J. A. V. Biological CO2 Mitigation from Coal Power Plant by Chlorella fusca and Spirulina sp. Bioresour. Technol. 2017, 234, 472–479.
  • Kumar, K.; Banerjee, D.; Das, D. Carbon Dioxide Sequestration from Industrial Flue Gas by Chlorella sorokiniana. Bioresour. Technol. 2014, 152, 225–233. DOI: 10.1016/j.biortech.2013.10.098.
  • Kasiri, S.; Ulrich, A.; Prasad, V. Otimization of CO2 Fixation by Chlorella Kessleri Cultivated in a Closed Raceway Photo-Biorecator. Bioresour. Technol. 2015, 194, 144–155.
  • NMX-AA-087-SCFI-2010. Water analysis-Test Method. 2010, 34–35.
  • Liao, Q.; Li, L.; Chen, R.; Zhu, X. A Novel Photobioreactor Generating the Light/dark Cycle to Improve Microalgae Cultivation. Bioresour. Technol. 2014, 161, 186–191. DOI: 10.1016/j.biortech.2014.02.119.
  • Chioccioli, M.; Hankamer, B.; Ross, I. L. Flow Cytometry Pulse Width Data Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas reinhardtii and Chlorella Vulgaris. PLoS One 2014, 9, e97269. DOI: 10.1371/journal.pone.0097269.
  • Nielsen, S. S. Total Carbohydrate by Phenol-Sulfuric Acid Method. In: Food Analysis Laboratory Manual. Food Science Text Series. Springer, Cham. 2017.
  • Horwitz, W. Association of Official Analytical Chemists. In Official Methods of Analysis of the AOAC. No. Ed. 15, 2010; Vol. 2.
  • Walker, J. M. The Lowry Method for protein quantitation. In The Protein Protocols Handbook. Springer, 2002.
  • Li, E.; Mira de Orduña, R. A Rapid Method for the Determination of Microbial Biomass by Dry Weight Using a Moisture Analyzer with an Infrared Heating Source and an Analytical Balance. Lett. Appl. Microbiol. 2010, 50, 283–288. DOI: 10.1111/j.1472-765X.2009.02789.x.
  • Montgomery, D. C. Diseño y Análisis de Experimentos. 2nd ed.; Grupo Editorial Limusa Wiley S.A. de C.V.: México, 2014.; 45–222.
  • Gong, Q.; Feng, Y.; Kang, L.; Luo, M.; Yang, J. Effects of Light and pH on Cell Density of Chlorella Vulgaris. Energy Procedia 2014, 61, 2012–2015. DOI: 10.1016/j.egypro.2014.12.064.
  • Ota, M.; Takenaka, M.; Sato, Y.; Smith, R.; Inomata, H. Effects of Light Intensity and Temperature on Photoautrophic Growth of a Green Microalga, Chlorococcum littorale. Biotechnol. Reports 2015, 7, 24–29. DOI: 10.1016/j.btre.2015.05.001.
  • Goncalves, A. L.; Simoes, M.; Pires, J. C. M. The Effect of Light Supply on Microalgal Growth, CO2 Uptake and Nutrient Removal from Wastewater. Energy Convers. Manag. 2014, 85, 530–536. DOI: 10.1016/j.enconman.2014.05.085.
  • Pires, J. C. M.; Gonçalves, A. L.; Martins, F. G.; Alvim-Ferraz, M. C. M. Simões, M. Effect of Light Supply on CO2 Capture from Atmosphere by Chlorella Vulgaris and Pseudokirchneriella subcapitata. Mitig. Adapt. Strateg. Glob. Chang 2013, 1–9.
  • Khalil, Z.; Asker, M. M.; El-Sayed, S.; Kobbia, I. A. Effect of pH on Growth and Biochemical Responses of Dunaliella bardawil and Chlorella ellipsoidea. World J. Microbiol. Biotechnol. 2010, 26, 1225–1231. DOI: 10.1007/s11274-009-0292-z.
  • Zhang, Q.; Zhan, J. J.; Hong, Y. The Effects of Temperature on the Growth, lipid Accumulation and Nutrient Removal Characteristics of Chlorella sp. HQ. Desalination Water Treatment 2015, 1–6.
  • Zúñiga, A. R. Reduction of carbon footprint by Means of Chlorella sp. cultures in Photobioreactors. J. Technol. Possibilism 2013, 2, 2013.
  • Robles, J. C.; Sacramento, J. C.; Ruiz, A.; Baz, S.; Canedo, Y.; Narváez, A. Evaluation of Cell Growth, nitrogen Removal and Lipid Production by Chlorella vulgaris to Different Conditions of Aeration in Two Types of Annular Photobioreactors. Revista Mexicana de Ingeniería Química 2016, 15, 361–377.
  • Choix, F. J.; Ochoa, M. A.; Hsieh, M.; Mondragon, P.; Mendez, H. O. High Biomass Production and CO2 Fixation from Biogas by Chlorella and Scenedesmus Microalgae Using Tequila Vinasses as Culture Medium. J. Appl. Phycol. 2018.
  • Xia, J. R.; Gao, K. S. Impacts of Elevated CO2 Concentration on Biochemical Composition, carbonic Anhydrase, and Nitrate Reductase Activity of Freshwater Green Microalgae. J. Integr. Plant Biol. 2005, 47, 668–675.
  • Wong, Y. K.; Ho, C.; Lai, P. K.; Leung, C.; Ho, Y. M.; Lee, O. K.; Leung, H. M. A Study on Algal Growth Behaviour under Different Sparing Period of CO2 Supplementation. Conference Paper: 1st International Conference on Beneficial Uses of Algal Biomass (ICBUAB), Hong Kong, 2013.
  • Rost, B.; Riebesell, U.; Burkhardt, S.; Sultemeyer, D. Carbon Acquisition of Bloom-forming Marine Phytoplankton. Limnol. Oceanogr. 2003, 48, 55–67. DOI: 10.4319/lo.2003.48.1.0055.
  • Tejeda, L.; Argumedo, D. H.; Alvear, M.; Saldarriaga, C. R. Characterization and Lipid Profile of Oil from Microalgae. Facultad de Ingeniería 2015, 24, 43–54.
  • Chia, M. A.; Lombardi, A. T.; Melao, M. Growth and Biochemical Composition of Chlorella vulgaris in Different Growth Media. An. Acad. Bras. Ciênc. 2013, 4, 1427–1438. DOI: 10.1590/0001-3765201393312.
  • Agwa, O. K.; Ibe, S. N.; Abu, G. O. Biomass and Lipid Production of a Fresh Water Algae Chlorella sp. using Locally Formulated Media. Int. Res. J. Microbiol. 2014, 3, 288–295.
  • Chaudhary, R.; Tong, Y. W.; Dikshit, A. K. Kinetic Study of Nutrients Removal from Municipal Wastewater by Chlorella vulgaris in Photobioreactor Supplied with CO2-enriched Air. Environ. Technol. 2018. DOI: 10.1080/09593330.2018.1508250.
  • Shabani, M.; Sayadi, M. H.; Rezaei, M. R. CO2 Bio-sequestration by Chlorella Vulgaris and Spirulina platensis in Response to Different Levels of Salinity and CO2. Proc. Int. Acad. Ecol. Environ. Sci. 2016, 6, 53–61.
  • Rodas, H. A.; Rodriguez, H.; Luna, A. I.; Alcala, J.; Vidales, J. A.; Biomass, F.,H. Production and Quality Estimation of Chlorella vulgaris (CLV2) under Large Scale Production Conditions. J. Exp. Biol. Agric. Sci. 2016, 4, 493–498.
  • García-Cubero, R. Biomass production of microalgae rich in carbohydrates completed to the photosyntetic elimination of CO2. Ph.D. Thesis. Universidad de Sevilla: España, 2014.
  • Moreira, J. B.; Terra, A. L. M.; Costa, J. A. V.; Morais, M. G. Utilization of CO2 in Semi-continuous Cultivation of Spirulina sp. and Chlorella fusca and Evaluation of Biomass Composition. Braz. J. Chem. Eng. 2016, 33, 691–698. DOI: 10.1590/0104-6632.20160333s20150135.
  • Barajas, S. A. F.; Godoy, R. C. A.; Monroy, D. J. D.; Barajas, F. C.; Kafarov, V. Improvement of CO2 Sequestration by Chlorella vulgaris UTEX 1803 on Lab Scale Photobioreactors. Rev. Ion 2012, 25, 39–47.
  • Cheng, D.; Li, D.; Yuan, Y.; Zhou, L.; Li, X.; Wu, T.; Wang, L.; Zhao, Q.; Wei, W.; Sun, Y. Improving Carbohydrate and Starch Accumulation in Chlorella sp. AE10 by a Novel Two-stage Process with Cell Dilution. Biotechnol. Biofuels 2017, 10, 75 2–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.