Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 5
162
Views
2
CrossRef citations to date
0
Altmetric
Articles

Tolerance of a sulfidogenic sludge to trichloroethylene at microcosms level as a basis for a long-term operation of reactors designed for its biodegradation

, , ORCID Icon, , & ORCID Icon
Pages 461-471 | Received 15 Oct 2018, Accepted 21 Dec 2018, Published online: 24 Jan 2019

References

  • Kalogerakis, N.; Arff, J.; Banat, I. M.; Broch, O. J.; Daffonchio, D.; Edvardsen, T.; Eguiraun, H.; Giuliano, L.; Handa, A.; López-de-Ipiña, K.; et al. The Role of Environmental Biotechnology in Exploring, Exploiting, Monitoring, Preserving, Protecting and Decontaminating the Marine Environment. New Biotechnol. 2015, 32, 157–167.
  • Harper, D. B. The Global Chloromethane Cycle: Biosynthesis, Biodegradation and Metabolic Role. Nat. Prod. Rep. 2000, 17, 337–348.
  • Futagami, T.; Morono, Y.; Terada, T.; Kaksonen, A. H.; Inagaki, F. Dehalogenation Activities and Distribution of Reductive Dehalogenase Homologous Genes in Marine Subsurface Sediments. Appl. Environ. Microbiol. 2009, 75, 6905–6909.
  • Field, J. A. Natural production of organohalide compounds in the environment. In Organohalide Respiring Bacteria; Adrian, L.; Löffler, F. E., Eds.; Springer-Verlag: Berlin, Heidelberg, 2016; pp 7–29.
  • Charlotte Hieke, A. S.; Brinkmeyer, R.; Yeager, K. M.; Schindler, K.; Zhang, S.; Xu, C.; Louchouarn, P.; Santschi, P. H. Widespread Distribution of Dehalococcoides mccartyi in the Houston Ship Channel and Galveston Bay, Texas, Sediments and the Potential for Reductive Dechlorination of PCDD/F in an Estuarine Environment. Mar. Biotechnol. 2016, 18, 630–644.
  • Matturro, B.; Presta, E.; Rossetti, S. Reductive Dechlorination of Tetrachloroethene in Marine Sediments: Biodiversity and Dehalorespiring Capabilities of the Indigenous Microbes. Sci. Total Environ. 2016, 545546, 445–452.
  • Sponza, D. T. Enhancement of Granule Formation and Sludge Retainment for Tetrachloroethylene (TCE) Removal in an Upflow Anaerobic Sludge Blanket (UASB) Reactor. Adv. Environ. Res. 2003, 7, 453–462.
  • Sponza, D. T. Toxicity and Treatability of Carbon Tetrachloride and Tetrachloroethylene in Anaerobic Batch Cultures. Int. Biodeterior. Biodegrad. 2003, 51, 119–127.
  • Siggins, A.; Enright, A.; Flaherty, V. O. Bioresource Technology Temperature Dependent (37–15 °C) Anaerobic Digestion of a Trichloroethylene-contaminated Wastewater. Bioresour. Technol. 2011, 102, 7645–7656.
  • Siggins, A.; Enright, A.; Flaherty, V. O. Methanogenic Community Development in Anaerobic Granular Bioreactors Treating Trichloroethylene (TCE)-Contaminated Wastewater at 37 °C and 15 °C. Water Res. 2011, 45, 2452–2462.
  • Siggins, A.; Enright, A.; Flaherty, V. O. Low-temperature (7 °C) Anaerobic Treatment of a Trichloroethylene-contaminated Wastewater: Microbial Community Development. Water Res. 2011, 45, 4035–4046.
  • Zhang, Y.; Hu, M.; Li, P.; Wang, X.; Meng, Q. Analysis of Trichloroethylene Removal and Bacterial Community Function Based on pH-adjusted in an Upflow Anaerobic Sludge Blanket Reactor. Appl. Microbiol. Biotechnol. 2015, 99, 9289–9297.
  • Guerrero-Barajas, C.; Ordaz, A.; Garibay-Orijel, C.; García-Solares, S. M.; Bastida-González, F.; Zarate-Segura, P. B. Enhanced Sulfate Reduction and Trichloroethylene (TCE) Biodegradation in a UASB Reactor Operated with a Sludge Developed from Hydrothermal Vents Sediments: Process and Microbial Ecology. Int. Biodeterior. Biodegrad. 2014, 94, 182–191.
  • García-Solares, S. M.; Ordaz, A.; Monroy-Hermosillo, O.; Jan-Roblero, J.; Guerrero-Barajas, C. High Sulfate Reduction Efficiency in a UASB Using an Alternative Source of Sulfidogenic Sludge Derived from Hydrothermal Vents Sediments. Appl. Biochem. Biotechnol. 2014, 174, 2919–2940.
  • Guerrero-Barajas, C.; Ordaz-Cortés, A.; García Solares, S. M.; Garibay-Orijel, C.; Bastida-González, F.; Zárate-Segura, P. B. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor. J. Visualized Exp. 2015, 104, e52956.
  • APHA. Standard Methods for the Examination of Water and Wastewater, APHA, AWWA and WEF: Washington, DC, 1999.
  • Trüper, H. G.; Schlegel, H. G. Sulphur Metabolism in Thiorhodaceae I. Quantitative Measurements on Growing Cells of Chromatium okenii. Antonie Van Leeuwenhoek 1964, 30, 225–238.
  • Lewis, A. E. Review of Metal Sulphide Precipitation. Hydrometallurgy 2010, 104, 222–234.
  • Gallegos-Garcia, M.; Celis, L. B.; Rangel-Méndez, R.; Razo-Flores, E. Precipitation and Recovery of Metal Sulfides from Metal Containing Acidic Wastewater in a Sulfidogenic Down-flow Fluidized Bed Reactor. Biotechnol. Bioeng. 2009, 102, 91–99.
  • Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, (Article no. 421).
  • García-Cruz, U.; Celis, L. B.; Poggi, H.; Meraz, M. Inhibitory Concentrations of 2,4D and Its Possible Intermediates in Sulfate Reducing Biofilms. J. Hazard. Mater. 2010, 179, 591–595.
  • Omil, F.; Lens, P.; Hulshoff Pol, L.; Lettinga, G. Effect of Upward Velocity and Sulphide Concentration on Volatile Fatty Acid Degradation in a Sulphidogenic Granular Sludge Reactor. Process Biochem. 1996, 31, 699–710.
  • O'Flaherty, V.; Mahony, T.; O´Kennedy, R.; Colleran, E. Effect of pH on Growth Kinetics and Sulphide Toxicity Thresholds of a Range of Methanogenic, Syntrophic and Sulphate-reducing Bacteria. Process Biochem. 1998, 33, 555–569.
  • García-Depraect, O.; Guerrero-Barajas, C.; Jan-Roblero, J.; Ordaz, A. Characterization of a Marine Microbial Community Used for Enhanced Sulfate Reduction and Copper Precipitation in a Two-step Process. Appl. Biochem. Biotechnol. 2017, 182, 452–467.
  • Bertolino, S. M.; Rodrigues, I. C. B.; Guerra-Sá, Sérgio, R.; Aquino, F.; Leão, V. A. Implications of Volatile Fatty Acid Profile on the Metabolic Pathway During Continuous Sulfate Reduction. J. Environ. Manage. 2012, 103, 15–23.
  • Menon, P.; Voordouw, G. Impact of Light Oil Toxicity on Sulfide Production by Acetate – Oxidizing Sulfate Reducing Bacteria. Int. Biodeterior. Biodegrad. 2018, 126, 208–215.
  • Ozdemir, C.; Dursun, S.; Karatas, M.; Sen, N.; Sahinkaya, S. Removal of Trichloroethylene (TCE) in up Flow Anaerobic Sludge Blanket Reactors (UASB). Biotechnol. Biotechnol. Equip. 2007, 21, 107–112.
  • Maymó-Gatell, X.; Chien, Y.; Gossett, J. M.; Zinder, S. H. Isolation of a Bacterium that Reductively Dechlorinates Tetrachloroethene to Ethene. Science 1997, 276, 1568–1571.
  • Shani, N.; Rossi, P.; Holliger, C. Correlations Between Environmental Variables and Bacterial Community Structures Suggest Fe(III) and Vinyl Chloride Reduction as Antagonistic Terminal Electron-Accepting Processes. Environ. Sci. Technol. 2013, 47, 6836–6845.
  • Lopes, S. I.; Sulistyawati, I.; Capela, M.; Lens, P. N. Low pH (6, 5 and 4) Sulfate Reduction During the Acidification of Sucrose Under Thermophilic (55 °C) Conditions. Process Biochem. 2007, 42, 580–591.
  • Butler, E.; Chen, L.; Darlington, R. Transformation of Trichloroethylene to Predominantly Non-regulated Products Under Stimulated Sulfate Reducing Conditions. Ground Water Monit. Remediat. 2013, 33, 52–60.
  • Kumar Shukla, A.; Nath Upadhyay, S.; Kumar Dubey, S. Current Trends in Trichloroethylene Biodegradation: A Review. Crit. Rev. Biotechnol. 2014, 34, 101–114.
  • Pantazidou, M.; Panagiotakis, I.; Mamais, D.; Zikidi, V. Chloroethene Biotransformation in the Presence of Different Sulfate Concentrations. Ground Water Monit. Remediat. 2012, 32, 106–119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.