Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 6
236
Views
15
CrossRef citations to date
0
Altmetric
Articles

Are the green synthesized nanoparticles safe for environment? A case study of aquatic plant Azolla filiculoides as an indicator exposed to magnetite nanoparticles fabricated using microwave hydrothermal treatment and plant extract

, ORCID Icon &
Pages 516-527 | Received 22 Jul 2018, Accepted 02 Jan 2019, Published online: 24 Jan 2019

References

  • Jafarirad, S. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. In Molecular Assemblies, 1st ed.; Mishra, M., Ed.; Taylor & Francis Group: New York, 2016.
  • Jafarirad, S. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. In Nanochemistry, 1st ed.; Mishra, M., Eds.; Taylor & Francis Group: New York, 2016.
  • Zhang, L. Z.; Mu, Y.; Jia, F.; Ai, Z. Negative Impact of Oxygen Molecular Activation on Cr (VI) removal with Core–shell Fe@ Fe2O3 Nanowires. J. Hazard. Mater. 2017, 298, 1–10.
  • Suib, S. L. New and Future Developments in Catalysis: Catalysis for Remediation and Environmental Concerns; Newnes, Elsevier, 2013.
  • Raveendran, P.; Fu, J.; Wallen, S. L. A Simple and “Green” Method for the Synthesis of Au, Ag, and Au–Ag Alloy Nanoparticles. Green Chem. 2006, 8, 34–38.
  • Kumari, R.; Barsainya, M.; Singh, D. P. Biogenic Synthesis of Silver Nanoparticle by Using Secondary Metabolites from Pseudomonas aeruginosa DM1 and Its Anti-algal Effect on Chlorella vulgaris and Chlorella pyrenoidosa. Environ. Sci. Pollut. Res. 2017, 24, 4645–4654.
  • Mahakham, W.; Theerakulpisut, P.; Maensiri, S.; Phumying, S.; Sarmah, A. K. Environmentally Benign Synthesis of Phytochemicals-capped Gold Nanoparticles as Nanopriming Agent for Promoting Maize Seed Germination. Sci. Total Environ. 2016, 573, 1089–1102.
  • Xiong, J.; Wang, Y.; Xue, Q.; Wu, X. Synthesis of Highly Stable Dispersions of Nanosized Copper Particles Using l-ascorbic Acid. Green Chem. 2011, 13, 900–904.
  • Jafarirad, S.; Mehrabi, M.; Divband, B.; Kosari-Nasab, M. Biofabrication of Zinc Oxide Nanoparticles Using Fruit Extract of Rosa Canina and Their Toxic Potential against Bacteria: A Mechanistic Approach. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 296–302.
  • Silva, V. A. J.; Andrade, P. L.; Silva, M. P. C.; Bustamante, A.; Luis, D. L. S.; Valladares, D.; AlbinoAguiar, J. Synthesis and Characterization of Fe3O4 Nanoparticles Coated with Fucan Polysaccharides. J. Magn. Magn. Mater. 2013, 343, 138–143.
  • Szekeres, M.; Illés, E.; Janko, C.; Farkas, K.; Tóth, I. Y.; Nesztor, D.; Zupkó, I.; Földesi, I.; Alexiou, C.; Tombácz, E. J. Hemocompatibility and Biomedical Potential of Poly(Gallic Acid) coated Iron Oxide Nanoparticles for Theranostic Use. Nanomed. Nanotechnol. 2015, 6, 1–7.
  • Kumar, B.; Smita, K.; Cumbal, L. Biosynthesis of Silver Nanoparticles Using Lantana Camara Flower Extract and Its Application. J. Sol-Gel Sci. Technol. 2016, 78, 285–292.
  • Madhumitha, G.; Elango, G.; Roopan, S. M. Bio-functionalized Doped Silver Nanoparticles and Its Antimicrobial Studies. J. Sol-Gel Sci. Technol. 2015, 73, 476–483.
  • Moraru, C. V.; Magyari, K.; Tamasan, M.; Suarasan, S.; Muntean, D.; Vlase, L.; Loghin, F.; Simon, S. Synthesis and Characterisation of Gossypium hirsutum Seeds Extract Nanoencapsulated in Silica Microparticles. J. Sol-Gel Sci. Technol. 2016, 77, 57–68.
  • Chowdhury, I. H.; Ghosh, S.; Roy, M.; Naskar, M. K. Green Synthesis of Water-dispersible Silver Nanoparticles at Room Temperature Using Green Carambola (star Fruit) Extract. J. Sol-Gel Sci. Technol. 2015, 73, 199–207.
  • Kumar, G. S.; Muthu, D.; Karunakaran, G.; Karthi, S.; Girija, E. K.; Kuznetsov, D. Curcuma Longa Tuber Extract Mediated Synthesis of Hydroxyapatite Nanorods Using Biowaste as a Calcium Source for the Treatment of Bone Infections. J. Sol-Gel Sci. Technol. 2018, 86, 610–616.
  • Nadagouda, M.; Varma, R. Green Synthesis of Silver and Palladium Nanoparticles at Room Temperature Using Coffee and Tea Extract. Green Chem. 2008, 10, 859–862.
  • Klaine, S. J.; Alvarez, P. J. J.; Batley, G. E.; Fernandes, T. F.; Handy, R. D.; Lyon, D. Y.; Mahendra, S.; McLaughlin, M. J.; Lead, J. R. Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects. Environ. Toxicol. Chem. 2008, 27, 1825–1851.
  • Tedesco, S.; Doyle, H.; Blasco, J.; Redmond, G.; Sheehan, D. Oxidative Stress and Toxicity of Gold Nanoparticles in Mytilus Edulis. Aquat. Toxicol. 2010, 100, 178–186.
  • Santos, S. M. A.; Dinis; A.M.; Rodrigues, D.M.F.; Peixoto, F.; Videira, R.A.; Jurado, A.S. Studies on the Toxicity of an Aqueous Suspension of C60 Nanoparticles Using a Bacterium (gen. Bacillus) and an Aquatic Plant (Lemna gibba) as In Vitro Model Systems. Aquat. Toxicol. 2013, 142–143, 347–354.
  • Pinto, E.; Sigaud-Kutner, T.; Leitao, M. A.; Okamoto, O. K.; Morse, D.; Colepicolo, P. Heavy Metal-Induced Oxidative Stress in Algae. J. Phycol. 2003, 39, 1008–1018.
  • Morelli, E.; Cioni, P.; Posarelli, M.; Gabellieri, E. Chemical Stability of CdSe Quantum Dots in Seawater and Their Effects on a Marine Microalga. Aquat. Toxicol. 2012, 122, 153–162.
  • Harborne, J. B.; Turner, B. L. Plant Chemosystematics; Academic Press: London, 2013.
  • Dreosti, I. E. Antioxidant Polyphenols in Tea, Cocoa, and Wine. Nutrition 2000, 16, 692–694.
  • Wagner, G. M. Azolla: A Review of Its Biology and Utilization. Bot. Rev. 1997, 63, 1–26.
  • Daniel, J. N.; Bartholomew, D. P. Growth and Photosynthesis of Three Azolla Species in Response to Irradiance. Biotronics 1993, 22, 1–14.
  • Radic, S.; Babic, M.; Skobic, D.; Roje, V.; Pevalek-Kozlina, B. Ecotoxicological Effects of Aluminum and Zinc on Growth and Antioxidants in Lemna minor L. Ecotoxicol. Environ. Saf. 2010, 73, 36–342.
  • Winterbourn, C. C.; McGrath, B. M.; Carrell, R. W. Reactions Involving Superoxide and Normal and Unstable Haemoglobins. Biochem. J. 1976, 155, 493–502.
  • Chance, B.; Maehly, A. Assay of Catalases and Peroxidases Methods. Enzymology 1955, 2, 764–775.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding. Anal. Biochem. 1976, 72, 248–254.
  • Singleton, V. L.; Rossi, J. A. Colorimetry of Total Phenolics with Phosphomolybdic-phosphotungstic Acid Reagents. Am. J. Enol. Vitic 1965, 16, 144–158.
  • Chang, C. C.; Yang, M. H.; Wen, H. M.; Chern, J. C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. Food Drug Anal. 2002, 10, 178–182.
  • Sun, Y.; Li, X.; Zhang, W.; Wang, H. P. A Method for the Preparation of Stable Dispersion of Zero-valent Iron Nanoparticles. Colloids Surf. A 2007, 308, 60–66.
  • Fazary, A. E.; Taha, M.; Ju, Y. H. Iron Complexation Studies of Gallic Acid. J. Chem. Eng. Data. 2009, 54, 35–42.
  • Rajendran, N. A.; Pemiah, B. R.; Sekar, R. K.; Krishnan, U. M.; Sethuraman, S.; Krishnaswamy, S. Role of Gallic Acid in the Preparation of an Iron-based Indian Traditional Medicine–Lauha Bhasma. Int. J. Pharm. Pharm. Sci. 2012, 4, 45–48.
  • Sood, A.; Uniyal, P. L.; Prasanna, R.; Ahluwalia, A. S. Phytoremediation Potential of Aquatic Macrophyte. Azolla Ambio 2012, 41, 122–137.
  • Khataee, A.; Movafeghi, A.; Mojaver, N.; Vafaei, F.; Tarrahi, R.; Dadpour, M. R. Toxicity of Copper Oxide Nanoparticles on Spirodela Polyrrhiza: Assessing Physiological Parameters. Res. Chem. Intermed. 2017, 43, 927–941.
  • Tarrahi, R.; Khataee, A.; Movafeghi, A.; Rezanejad, F.; Gohari, G. Toxicological Implications of Selenium Nanoparticles with Different Coatings along with Se4+ on Lemna minor. Chemosphere 2017, 181, 655–665.
  • Jiang, H. S.; Li, M.; Chang, F. Y.; Li, W.; Yin, L. Y. Physiological Analysis of Silver Nanoparticles and AgNO3 Toxicity to Spirodela polyrhiza. Environ. Toxicol. Chem. 2012, 31, 1880–1886.
  • Alscher, R. G.; Erturk, N.; Heath, L. S. Role of Superoxide Dismutases (SODs) in Controlling Oxidative Stress in Plants. Exp. J. Bot. 2002, 53, 1134–1331.
  • Van der Oost, R.; Beyer, J.; Vermeulen, N. P. Fish Bioaccumulation and Biomarkers in Environmental Risk Assessment: A Review. Environ. Toxicol. Pharmacol. 2003, 13, 57–149.
  • Khataee, A. R.; Movafeghi, A.; Torbati, S.; Salehi Lisar, S. Y.; Zarei, M. Phytoremediation Potential of Duckweed (Lemna minor L.) in Degradation of C.I. Acid Blue 92: Artificial Neural Network Modeling. Ecotoxicol. Environ. Saf. 2012, 80, 291–298.
  • Movafeghi, A.; Khataee, A. R.; Moradi, Z.; Vafaei, F. Biodegradation of Direct Blue 129 Diazo Dye by Spirodela polyrrhiza: An Artificial Neural Networks Modeling. Int. J. Phytoremediat. 2016, 18, 337–347.
  • Hu, C.; Liu, X.; Li, X.; Zhao, Y. Evaluation of Growth and Biochemical Indicators of Salvinia Natans Exposed to Zinc Oxide Nanoparticles and Zinc Accumulation in Plants. Environ. Sci. Pollut. Res. 2014, 21, 732–739.
  • Havaux, M. Spontaneous and Thermoinduced Photon Emission: New Methods to Detect and Quantify Oxidative Stress in Plants. Trends Plant Sci. 2003, 8, 409–413.
  • Vafaei, F.; Movafeghi, A.; Khataee, A.; Zarei, M.; Lisar, S. Y. S. Potential of Hydrocotyle vulgaris for Phytoremediation of a Textile Dye: Inducing Antioxidant Response in Roots and Leaves. Ecotoxicol. Environ. Saf. 2013, 93, 128–134.
  • Hatami, M.; Ghorbanpour, M. Defense Enzyme Activities and Biochemical Variations of Pelargonium zonale in Response to Nanosilver Application and Dark Storage. Turk. J. Biol. 2014, 38, 130–139.
  • Corral-Diaz, B.; Peralta-Videa, J. R.; Alvarez-Parrilla, E.; Rodrigo-García, J.; Morales, M. I.; Osuna-Avila, P.; Niu, G.; Hernandez-Viezcas, J. A.; Gardea-Torresdey, J. L. Cerium Oxide Nanoparticles Alter the Antioxidant Capacity but Do Not Impact Tuber Ionome in Raphanus sativus (L). Plant Physiol. Biochem. 2014, 84, 277–285.
  • Krishnaraj, C.; Jagan, E. G.; Ramachandran, R.; Abirami, S. M.; Mohan, N.; Kalaichelvan, P. T. Effect of Biologically Synthesized Silver Nanoparticles on Bacopa monnieri (Linn.) Wettst Plant Growth Metabolism. Process Biochem. 2012, 47, 651–658.
  • Ghafariyan, M. H.; Malakouti, M. J.; Dadpour, M. R.; Stroeve, P.; Mahmoudi, M. Effects of Magnetite Nanoparticles on Soybean Chlorophyll. Environ. Sci. Technol. 2013, 47, 10645–10652.
  • Nowack, B.; Bucheli, T. D. Occurrence, Behavior and Effects of Nanoparticles in the Environment. Environ. Pollut. 2007, 150, 5–22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.