Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 6
163
Views
5
CrossRef citations to date
0
Altmetric
Articles

Metal removal and morphological changes of B. megaterium in the presence of a spent catalyst

, , &
Pages 543-550 | Received 09 May 2018, Accepted 05 Jan 2019, Published online: 12 Feb 2019

References

  • Marafi, M.; Stanislaus, A.; Furimsky, E. Handbook of Spent Hydroprocessing Catalysts Regeneration, Rejuvenation, Reclamation, Environment, and Safety; Elsevier: Amsterdam, The Netherlands, 2010; 452 pp.
  • Liu, C.; Yu, Y.; Zhao, H. Hydrodenitrogenation of Quinoline Over Ni–Mo/Al2O3 Catalyst Modified with Fluorine and Phosphorus. Fuel Process. Technol. 2005, 86, 449–460. doi:10.1016/j.fuproc.2004.05.002.
  • Marafi, M.; Stanislaus, A. Spent Hydroprocessing Catalyst Management: A Review. Part II. Advances in Metal Recovery and Safe Disposal Methods. Resour. Conserv. Recycl. 2008, 53, 1–26. doi:10.1016/j.resconrec.2008.08.005.
  • Akcil, A.; Vegliò, F.; Ferella, F.; Okudan, M. D.; Tuncuk, A. A Review of Metal Recovery from Spent Petroleum Catalysts and Ash. Waste Manag. 2015, 45, 420–433. doi:10.1016/j.wasman.2015.07.007
  • Llanos, Z. R.; Lacave, J.; Deering, W. G. Treatment of Spent Hydroprocessing Catalysts at Gulf Chemical and Metallurgical Corporation. Proceedings of the SME Annual Meeting, New Orleans, LA, March 2–6, 1986; Society of Mining Engineers: Englewood, CO; pp.1–10.
  • Oza, R.; Patel, S. Recovery of Nickel from Spent Ni/Al2O3 Catalysts Using Acid Leaching, Chelation and Ultrasonication. Res. J. Recent Sci. 2011, 1, 434–443.
  • Vary, P. S.; Biedendieck, R.; Fuerch, T.; Meinhardt, F.; Rohde, M.; Deckwer, W. D.; Jahn, D. Bacillus megaterium – From Simple Soil Bacterium to Industrial Protein Production Host. Appl. Microbiol. Biotechnol. 2007, 76, 957–967. doi:10.1007/s00253-007-1089-3.
  • Nicholson, W. L.; Munakata, N.; Horneck, G.; Melosh, H. J.; Setlow, P. Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments. Microbiol. Mol. Biol. Rev. 2000, 64, 548–572. doi:10.1128/MMBR.64.3.548-572.2000.
  • Gómez-Ramírez, M.; Montero-Álvarez, L. A.; Tobón-Avilés, A.; Rojas-Avelizapa, N. G. Potential Application of Microorganisms Tolerant to Ni and V in the Recovery of Metals Present in Spent Catalysts (Spanish). Proceedings of the First Congress of Biotechnological Innovation, Mazatlán, Mexico, Oct 18–20, 2012; Universidad Politécnica de Sinaloa: Mazatlán, Sin., Mexico.
  • Arenas-Isaac, G.; Gómez-Ramírez, M.; Montero-Álvarez, L.; Tobón-Avilés, A.; Fierros-Romero, G.; Rojas-Avelizapa, N. G. Novel Microorganisms for the Treatment of Ni and V of Spent Catalysts. Ind. J. Biotechnol. 2017, 16, 370–379. http://nopr.niscair.res.in/handle/123456789/43333.
  • Chien, M.; Nakahata, R.; Ono, T.; Miyauchi, K.; Endo, G. Mercury Removal and Recovery by Immobilized Bacillus megaterium MB1. Front. Chem. Sci. Eng. 2012, 6, 192–197. doi:10.1007/s11705-012-1284-3.
  • Rajkumar, M.; Ma, Y.; Freitas, H. Improvement of Ni Phytostabilization by Inoculation of Ni Resistant Bacillus megaterium SR28C. J. Environ. Manage. 2013, 128, 973–980. doi:10.1016/j.jenvman.2013.07.001
  • Rivas-Castillo, A. M.; Mejía-Escobedo, Y.; Rojas-Avelizapa, N. G. Study of Bacillus megaterium Potential Application for High Metal Content Residues Biotreatment. Open J. Bacteriol. 2018, 2, 4–8.
  • Rivas-Castillo, A. M.; Orona-Tamayo, D.; Gómez-Ramírez, M.; Rojas-Avelizapa, N. G. Diverse Molecular Resistance Mechanisms of Bacillus megaterium During Metal Removal Present in a Spent Catalyst. Biotechnol. Bioprocess Eng. 2017, 22, 296–307. doi:10.1007/s12257-016-0019-6.
  • García, R.; Campos, J.; Cruz, J. A.; Calderón, M. A.; Rayna, M. A.; Buitrón, G. Biosorption of Cd, Cr, Mn, and Pb from Aqueous Solutions by Bacillus sp. strains Isolated from Industrial Waste Activate Sludge. Rev. Esp. Cien. Quím. Biol. 2016, 19, 5–14. doi:10.1016/j.recqb.2016.02.001.
  • Syed, S.; Chinthala, P. Heavy Metal Detoxification by Different Bacillus Species Isolated from Solar Salterns. Scientifica 2015, 2015, (Article ID 319760), 1–8. doi:10.1155/2015/319760.
  • Stefanescu, I. A. Bioaccumulation of Heavy Metals by Bacillus megaterium from Phosphogypsum Waste. Scientific Study & Research – Chemistry & Chemical Engineering. Biotechnol. Food Ind. 2015, 16, 93– 97.
  • Fierros-Romero, G.; Rivas-Castillo, A.; Gómez-Ramírez, M.; Pless, R.; Rojas Avelizapa, N. G. Expression Analysis of Ni- and V-Associated Resistance Genes in a Bacillus megaterium Strain Isolated from a Mining Site. Curr. Microbiol. 2016, 73, 165–171. doi:10.1007/s00284-016-1044-6.
  • Böttinger, B.; Semmler, F.; Zerulla, K.; Ludt, K.; Soppa, J. Regulated Ploidy of Bacillus subtilis and Three New Isolates of Bacillus and Paenibacillus. FEMS Microbiol. Lett. 2018, 365, 1–17.
  • Schaeffer, A. B.; Fulton, M. D. A Simplified Method of Staining Endospores. Science 1933, 77, 194. doi:10.1126/science.77.1990.194
  • Carrera, M.; Zandomeni, R. O.; Sagripanti, J. L. Wet and Dry Density of Bacillus anthracis and Other Bacillus species. J. Appl. Microbiol. 2008, 105, 68–77. doi:10.1111/j.1365-2672.2008.03758.x
  • Nicholson, W. L.; Setlow, P. Sporulation, Germination and Outgrowth. In Molecular Biological Methods for Bacillus; Harwood, C. R., Cutting, S. M., Eds.; Wiley: Chichester, United Kingdom, 1990; pp. 391–450.
  • Torres-Blancas, T.; Roa-Morales, G.; Barrera-Díaz, C.; Ureña-Nuñez, F.; Cruz-Olivares, J.; Balderas-Hernández, P.; Natividad, R. Ozonation of Indigo Carmine Enhanced by Fe/Pimenta Dioica L. Merrill Particles. Int. J. Photoenergy 2015, 2015, (Article ID 608412), 1–9. doi:10.1155/2015/608412.
  • Amoozegar, M. A.; Hamedi, J.; Dadashipour, M.; Shariatpanahi, S. Effect of Salinity on the Tolerance to Toxic Metals and Oxyanions in Native Moderately Halophilic Sporeforming Bacilli. World J. Microbiol. Biotechnol. 2005, 21, 1237–1243. doi:10.1007/s11274-005-1804-0.
  • Elsilk, S. E.; El-Shanshoury, A. E. R.; Ateya, P. S. Accumulation of Some Heavy Metals by Metal Resistant Avirulent Bacillus anthracis PS2010 Isolated from Egypt. Afr. J. Microbiol. Res. 2014, 8, 1266–1276.
  • Russell, J. R.; Cabeen, M. T.; Wiggins, P. A.; Paulsson, J.; Losick, R. Noise in a Phosphorelay Drives Stochastic Entry into Sporulation in Bacillus subtilis. EMBO J. 2017, 36, 2856–2869. doi:10.15252/embj.201796988
  • Modest, B.; Marahiel, M. A.; Pschorn, W.; Ristow, H. Peptide Antibiotics and Sporulation: induction of Sporulation in Asporogenous and Peptide-Negative Mutants of Bacillus brevis. J. Gen. Microbiol. 1984, 130, 747–755. doi:10.1099/00221287-130-4-747.
  • Ryu, J. H.; Kim, H.; Beuchat, L. R. Spore Formation by Bacillus cereus in Broth as Affected by Temperature, Nutrient Availability, and Manganese. J. Food Prot. 2005, 68, 1734–1738. doi:10.4315/0362-028X-68.8.1734
  • Setlow, P. Germination of Spores of Bacillus Species: What We Know and Do Not Know. J. Bacteriol. 2014, 196, 1297–1305. doi:10.1128/JB.01455-13
  • Okamoto, A.; Yamamuro, M.; Tatarazako, N. Acute Toxicity of 50 Metals to Daphnia Magna. J. Appl. Toxicol. 2015, 35, 824–830. doi:10.1002/jat.3078
  • Haas, K. L.; Franz, K. J. Application of Metal Coordination Chemistry to Explore and Manipulate Cell Biology. Chem. Rev. 2009, 109, 4921–4960. doi:10.1021/cr900134a
  • Selenska-Pobell, S.; Panak, P.; Miteva, V.; Boudakov, I.; Bernhard, G.; Nitsche, H. Selective Accumulation of Heavy Metals by Three Indigenous Bacillus Strains, B. cereus, B. megaterium and B. sphaericus, from Drain Waters of a Uranium Waste Pile. FEMS Microbiol. Ecol. 1999, 29, 59–67. doi:10.1111/j.1574-6941.1999.tb00598.x.
  • Butler, K. S.; Casey, B. J.; Garborcauskas, G. V. M.; Dair, B. J.; Elespuru, R. K. Assessment of Titanium Dioxide Nanoparticle Effects in Bacteria: Association, Uptake, Mutagenicity, Co-mutagenicity and DNA Repair Inhibition. Mutat. Res. Genet. Toxicol. Environ. Mutagen 2014, 768, 14–22. doi:10.1016/j.mrgentox.2014.04.008.
  • Kuisma-Kursula, P. Accuracy, Precision and Detection Limits of SEM–WDS, SEM–EDS and PIXE in the Multi-Elemental Analysis of Medieval Glass. X-Ray Spectrom. 2000, 29, 111–118. doi:10.1002/(SICI)1097-4539(200001/02)29:1<111::AID-XRS408>3.0.CO;2-W
  • Silvaggi, J. M.; Popham, D. L.; Driks, A.; Eichenberger, P.; Losick, R. Unmasking Novel Sporulation Genes in Bacillus subtilis. J. Bacteriol. 2004, 186, 8089–8095. doi:10.1002/(SICI)1097-4539(200001/02)29:1<111::AID-XRS408>3.0.CO;2-W.
  • Gozzi, K.; Ching, C.; Paruthiyil, S.; Zhao, Y.; Godoy-Carter, V.; Chai, Y. Bacillus subtilis Utilizes the DNA Damage Response to Manage Multicellular Development. Biofilms Microbiomes 2017, 3, 1–8.
  • Gomathy, M.; Thangaraju, M.; Gunasekaran, S.; Gopal, N. O. Sporulation and Regeneration Efficiency of Phosphobacteria (Bacillus megaterium Var Phosphaticum). Indian J. Microbiol. 2007, 47, 259–262. doi:10.1007/s12088-007-0047-1.
  • Francis, C. A.; Tebo, B. M. Marine Bacillus Spores as Catalysts for Oxidative Precipitation and Sorption of Metals. J. Mol. Microbiol. Biotechnol. 1999, 1, 71–78.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.