Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 6
322
Views
1
CrossRef citations to date
0
Altmetric
Articles

A novel framework of multivariate modeling of water distribution network through 33 factorial design and artificial neural network

, , &
Pages 551-562 | Received 01 Aug 2018, Accepted 08 Jan 2019, Published online: 22 Feb 2019

References

  • Vairavamoorthy, K.; Gorantiwar, S. D.; Pathirana, A. Managing Urban Water Supplies in Developing Countries—Climate Change and Water Scarcity Scenarios. Phys. Chem. Earth 2008, 33, 330–339. doi:10.1016/j.pce.2008.02.008.
  • Ilaya-Ayza, A. E.; Campbell, E.; Pérez-García, R.; Izquierdo, J. Network Capacity Assessment and Increase in Systems with Intermittent Water Supply. Water (Switzerland) 2016, 8, 126. doi:10.3390/w8040126.
  • Fontanazza, C. M.; Freni, G.; Loggia, G. L. Analysis of intermittent supply systems in water scarcity conditions and evaluation of the resource distribution equity indices. WIT Trans. Ecol. Environ. 2007, 103, 635–644.
  • Totsuka, N.; Trifunovic, N.; Vairavamoorthy, K. Intermittent Urban Water Supply Under Water Starving Situations. Presented at the 30th WEDC International Conference, Vientiane, Lao PDR, 2004; pp. 505–512.
  • Abu-Madi, M.; Trifunovic, N. Impacts of Supply Duration on the Design and Performance of Intermittent Water Distribution Systems in the West Bank. Water Int. 2013, 38, 263–282. doi:10.1080/02508060.2013.794404.
  • Kumpel, E.; Nelson, K. L. Intermittent Water Supply: Prevalence, Practice, and Microbial Water Quality. Environ. Sci. Technol. 2016, 50, 542–553. doi:10.1021/acs.est.5b03973.
  • Ilaya-Ayza, A. E.; Martins, C.; Campbell, E.; Izquierdo, J. Gradual Transition from Intermittent to Continuous Water Supply Based on Multi-Criteria Optimization for Network Sector Selection. J. Comput. Appl. Math. 2018, 330, 1016–1029. doi:10.1016/j.cam.2017.04.025.
  • Yabalak, E. Degradation of Ticarcillin by Subcritical Water Oxidation Method: Application of Response Surface Methodology and Artificial Neural Network Modeling. J. Environ. Sci. Health A 2018, 53, 1–11.
  • Ma, Y.; Huang, M.; Wan, J.; Hu, K.; Wang, Y.; Zhang, H. Hybrid Artificial Neural Network Genetic Algorithm Technique for Modeling Chemical Oxygen Demand Removal in Anoxic/Oxic Process. J. Environ. Sci. Health A 2011, 46, 574–580. doi:10.1080/10934529.2011.562821.
  • Ghosal, P. S.; Gupta, A. K. Sorptive Equilibrium Profile of Fluoride onto Aluminum Olivine [(FexMg1-x)2SiO4] Composite (AOC): Physicochemical Insights and Isotherm Modeling by Non-Linear Least Squares Regression and a Novel Neural-Network-Based Method. J. Environ. Sci. Health A, 53, 2018, 1–13. doi:10.1080/10934529.2018.1474590.
  • Chronopoulos, K. I.; Tsiros, I. X.; Dimopoulos, I. F.; Alvertos, N. An Application of Artificial Neural Network Models to Estimate Air Temperature Data in Areas with Sparse Network of Meteorological Stations. J. Environ. Sci. Health A 2008, 43, 1752–1757. doi:10.1080/10934520802507621.
  • Flores-Asis, R.; Méndez-Contreras, J. M.; Juárez-Martínez, U.; Alvarado-Lassman, A.; Villanueva-Vásquez, D.; Aguilar-Lasserre, A. A. Use of Artificial Neuronal Networks for Prediction of the Control Parameters in the Process of Anaerobic Digestion with Thermal Pretreatment. J. Environ. Sci. Health A 2018, 53, 883–890. doi:10.1080/10934529.2018.1459070.
  • Hu, K.; Wan, J. Q.; Ma, Y. W.; Wang, Y.; Huang, M. Z. A Fuzzy Neural Network Model for Monitoring A2/O Process Using On-Line Monitoring Parameters. J. Environ. Sci. Health A 2012, 47, 744–754. doi:10.1080/10934529.2012.660102.
  • Kim, M.-Y.; Kim, M.-K. Dynamics of Surface Runoff and Its Influence on the Water Quality Using Competitive Algorithms in Artificial Neural Networks. J. Environ. Sci. Health A 2007, 42, 1057–1064. doi:10.1080/10934520701418490.
  • Yabalak, E.; Yilmaz, Ö. Eco-friendly Approach to Mineralise 2-Nitroaniline Using Subcritical Water Oxidation Method: Use of ANN and RSM in the Optimisation and Modeling of the Process. J. Iran. Chem. Soc. 2018, 6, 1–10.
  • Baş, D.; Boyacı, İH. Modeling and Optimization II: Comparison of Estimation Capabilities of Response Surface Methodology with Artificial Neural Networks in a Biochemical Reaction. J. Food Eng. 2007, 78, 846–854. doi:10.1016/j.jfoodeng.2005.11.025.
  • Desai, K. M.; Survase, S. A.; Saudagar, P. S.; Lele, S. S.; Singhal, R. S. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in Fermentation Media Optimization: Case Study of Fermentative Production of Scleroglucan. Biochem. Eng. J. 2008, 41, 266–273. doi:10.1016/j.bej.2008.05.009.
  • Gupta, A. K.; Ghosal, P. S.; Srivastava, S. K. Modeling and Optimization of Defluoridation by Calcined Ca-Al-(NO3)-LDH Using Response Surface Methodology and Artificial Neural Network Combined with Experimental Design. J. Hazard. Toxic. Radioact. Waste 2017, 21, 04016024. doi:10.1061/(ASCE)HZ.2153-5515.0000343.
  • Abbasi, B.; Mahlooji, H. Improving Response Surface Methodology by Using Artificial Neural Network and Simulated Annealing. Expert Syst. Appl. 2012, 39, 3461–3468. doi:10.1016/j.eswa.2011.09.036.
  • Ostfeld, A.; Oliker, N.; Salomons, E. Multiobjective Optimization for Least Cost Design and Resiliency of Water Distribution Systems. J. Water Resour. Plann. Manage. 2014, 140, 04014037. doi:10.1061/(ASCE)WR.1943-5452.0000407.
  • Yazdani, A.; Jeffrey, P. Applying Network Theory to Quantify the Redundancy and Structural Robustness of Water Distribution Systems. J. Water Resour. Plann. Manage. 2012, 138, 153–161. doi:10.1061/(ASCE)WR.1943-5452.0000159.
  • Aksela, K.; Aksela, M.; Vahala, R. Leakage Detection in a Real Distribution Network Using a SOM. Urban Water J. 2009, 6, 279–289. doi:10.1080/15730620802673079.
  • Rathi, S.; Gupta, R. Optimal Sensor Locations for Contamination Detection in Pressure-Deficient Water Distribution Networks Using Genetic Algorithm. Urban Water J. 2017, 14, 160–172. doi:10.1080/1573062X.2015.1080736.
  • Tabesh, M.; Shirzad, A.; Arefkhani, V.; Mani, A. A Comparative Study Between the Modified and Available Demand Driven Based Models for Head Driven Analysis of Water Distribution Networks. Urban Water J. 2014, 11, 221–230. doi:10.1080/1573062X.2013.783084.
  • Song, I.; Romero-Gomez, P.; Andrade, M. A.; Mondaca, M.; Choi, C. Y. Mixing at Junctions in Water Distribution Systems: An Experimental Study. Urban Water J. 2018, 15, 32–38. doi:10.1080/1573062X.2017.1364395.
  • Wang, M.; Barkdoll, B. D. A Sensitivity Analysis Method for Water Distribution System Tank Siting for Energy Savings. Urban Water J. 2017, 14, 713–719. doi:10.1080/1573062X.2016.1241285.
  • Sadiq, M.; Zaidi, T. H.; Muhanna, H.; Al.; Mian, A. A. Effect of Distribution Network Pipe Material on Drinking Water Quality. J. Environ. Sci. Health A Environ. Sci. Eng. Toxicol. 1997, 32, 445–454. doi:10.1080/10934529709376553.
  • Clark, R. M. Water Quality Modeling in Distribution Systems. J. Environ. Sci. Health A Environ. Sci. Eng. Toxicol. 1992, 27, 1329–1366.
  • Wu, Z. Y. Optimal Calibration Method for Water Distribution Water Quality Model. J. Environ. Sci. Health A 2006, 41, 1363–1378. doi:10.1080/10934520600657115.
  • Abbaszadegan, M.; Yi, M.; Alum, A. Stimulation of 2-Methylisoborneol (MIB) Production by Actinomycetes After Cyclic Chlorination in Drinking Water Distribution Systems. J. Environ. Sci. Health A 2015, 50, 365–371. doi:10.1080/10934529.2015.987526.
  • Vasan, A.; Simonovic, S. P. Optimization of Water Distribution Network Design Using Differential Evolution. J. Water Resour. Plann. Manage. 2010, 136, 279–287. doi:10.1061/(ASCE)0733-9496(2010)136:2(279).
  • Ghosal, P. S.; Gupta, A. K.; Sulaiman, A. Multivariate Optimization of Process Parameters in the Synthesis of Calcined CaAl (NO3) LDH for Defluoridation Using 33 Factorial, Central Composite and Box-Behnken Design. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 2016, 51, 86–96. doi:10.1080/10934529.2015.1086212.
  • Agami, N.; Atiya, A.; Saleh, M.; El-Shishiny, H. A Neural Network Based Dynamic Forecasting Model for Trend Impact Analysis. Technol. Forecast. Soc. Change 2009, 76, 952–962. doi:10.1016/j.techfore.2008.12.004.
  • Uddameri, V. Using Statistical and Artificial Neural Network Models to Forecast Potentiometric Levels at a Deep Well in South Texas. Environ. Geol. 2007, 51, 885–895. doi:10.1007/s00254-006-0452-5.
  • CPHEEO. Manual on Water Supply and Treatment. 1999. Ministry of Urban Development: New Delhi, India.
  • Kundu, S.; Gupta, A. K. Arsenic Adsorption Onto Iron Oxide-Coated Cement (IOCC): Regression Analysis of Equilibrium Data with Several Isotherm Models and Their Optimization. Chem. Eng. J. 2006, 122, 93–106. doi:10.1016/j.cej.2006.06.002.
  • Ayoob, S.; Gupta, A. K. Insights into Isotherm Making in the Sorptive Removal of Fluoride from Drinking Water. J. Hazard. Mater. 2008, 152, 976–985. doi:10.1016/j.jhazmat.2007.07.072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.