Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 6
202
Views
8
CrossRef citations to date
0
Altmetric
Articles

Enhancing hydrogen production through anaerobic co-digestion of fruit waste with biosolids

, , &
Pages 563-569 | Received 26 Sep 2018, Accepted 05 Jan 2019, Published online: 07 Feb 2019

References

  • Garcia-Peña, E. I.; Parameswaran, P.; Kang, D. W.; Canul-Chan, M.; Krajmalnik-Brown, R. Anaerobic Digestion and Co-digestion Processes of Vegetable and Fruit Residues: Process and Microbial Ecology. Bioresour. Technol. 2011, 102, 9447–9455. DOI: 10.1016/j.biortech.2011.07.068.
  • Saidi, R.; Liebgott, P. P.; Gannoun, H.; Gaida, L. B.; Miladi, B.; Hamdi, M.; Bouallagui, H.; Auria, R. Biohydrogen Production from Hyperthermophilic Anaerobic Digestion of Fruit and Vegetable Wastes in Seawater: Simplification of the Culture Medium of Thermotoga maritima. Waste Manag. 2018, 71, 474–484. DOI: 10.1016/j.wasman.2017.09.042.
  • Nandi, R.; Sengupta, S. Microbial Production of Hydrogen: An Overview. Crit. Rev. Microbiol. 1998, 24, 61–84. DOI: 10.1080/10408419891294181.
  • Zhu, H.; Béland, M. Evaluation of Alternative Methods of Preparing Hydrogen Producing Seeds from Digested Wastewater Sludge. Int. J. Hydrogen Energ. 2006, 31, 1980–1988. DOI: 10.1016/j.ijhydene.2006.01.019.
  • Kim, S. H.; Han, S. K.; Shin, H. S. Feasibility of Biohydrogen Production by Anaerobic Co-digestion of Food Waste and Sewage Sludge. Int. J. Hydrogen Energ. 2004, 29, 1607–1616. DOI: 10.1016/j.ijhydene.2004.02.018.
  • Anbazhagan, S.; Palani, S. Extraction of Consortium of Hydrolytic Enzymes from Waste Activated Sludge Using Ultrasonication and Stirring with Surfactants. Ultrason. Sonochem. 2018, 40, 874–880. DOI: 10.1016/j.ultsonch.2017.08.034.
  • Sethupathy, A.; Sivashanmugam, P. Enhancing Biomethane Potential of Pulp and Paper Sludge through Disperser Mediated Polyhydroxyalkanoates. Energy Convers. Manag. 2018, 173, 179–186. DOI: 10.1016/j.enconman.2018.07.076.
  • Arun, C.; Sivashanmugam, P. Solubilization of Waste Activated Sludge Using a Garbage Enzyme Produced from Different Pre-consumer Organic Waste. RSC Adv. 2015, 5, 51421–51427. DOI: 10.1039/C5RA07959D.
  • Beltrán, C.; Jeison, D.; Fermoso, F. G.; Borja, R. Batch Anaerobic Co-digestion of Waste Activated Sludge and Microalgae (Chlorella Sorokiniana) at Mesophilic Temperature. J. Environ. Sci. Heal. Part A: Toxic/Hazard. Subst. Environ. Eng. 2016, 51, 847–850. DOI: 10.1080/10934529.2016.1181456.
  • Mata-Alvarez, J.; Dosta, J.; Macé, S.; Astals, S. Codigestion of Solid Wastes: A Review of Its Uses and Perspectives Including Modeling. Crit. Rev. Biotechnol. 2011, 31, 99–111. DOI: 10.3109/07388551.2010.525496.
  • Astals, S.; Batstone, D. J.; Mata-Alvarez, J.; Jensen, P. D. Identification of Synergistic Impacts during Anaerobic Co-digestion of Organic Wastes. Bioresour. Technol. 2014, 169, 421–427. DOI: 10.1016/j.biortech.2014.07.024.
  • Sreela-Or, C.; Plangklang, P.; Imai, T.; Reungsang, A. Co-digestion of Food Waste and Sludge for Hydrogen Production by Anaerobic Mixed Cultures: Statistical Key Factors Optimization. Int. J. Hydrogen Energ. 2011, 36, 14227–14237. DOI: 10.1016/j.ijhydene.2011.05.145.
  • Gottardo, M.; Micolucci, F.; Mattioli, A.; Faggian, S.; Cavinato, C.; Pavan, P. Hydrogen and Methane Production from Biowaste and Sewage Sludge by Two Phases Anaerobic Codigestion. Chem. Eng. Trans. 2015, 43, 379–384.
  • Tyagi, V. K.; Angériz Campoy, R.; Álvarez-Gallego, C. J.; Romero García, L. I. Bioresource Technology Enhancement in Hydrogen Production by Thermophilic Anaerobic Co-digestion of Organic Fraction of Municipal Solid Waste and Sewage Sludge – Optimization of Treatment Conditions. Bioresour. Technol. 2014, 164, 408–415. DOI: 10.1016/j.biortech.2014.05.013.
  • Kim, M.; Yang, Y.; Morikawa-Sakura, M. S.; Wang, Q.; Lee, M. V.; Lee, D.; Feng, C.; Zhou, Y.; Zhang, Z. Hydrogen Production by Anaerobic Co-digestion of Rice Straw and Sewage Sludge. Int. J. Hydrogen Energ. 2012, 37, 3142–3149. DOI: 10.1016/j.ijhydene.2011.10.116.
  • Zhu, H.; Parker, W.; Basnar, R.; Proracki, A.; Falletta, P.; Béland, M.; Seto, P. Biohydrogen Production by Anaerobic Co-digestion of Municipal Food Waste and Sewage Sludges. Int. J. Hydrogen Energ. 2008, 33, 3651–3659. DOI: 10.1016/j.ijhydene.2008.04.040.
  • Shanthi, M.; Banu, J. R.; Sivashanmugam, P. Effect of Surfactant Assisted Sonic Pretreatment on Liquefaction of Fruits and Vegetable Residue: Characterization, Acidogenesis, Biomethane Yield and Energy Ratio. Bioresour. Technol. 2018, 264, 35–41. DOI: 10.1016/j.biortech.2018.05.054.
  • Rani, R. U.; Kaliappan, S.; Kumar, S. A.; Banu, J. R. Combined Treatment of Alkaline and Disperser for Improving Solubilization and Anaerobic Biodegradability of Dairy Waste Activated Sludge. Bioresour. Technol. 2012, 126, 107–116. DOI: 10.1016/j.biortech.2012.09.027.
  • Cai, M.; Liu, J.; Wei, Y. Enhanced Biohydrogen Production from Sewage Sludge with Alkaline Pretreatment. Environ. Sci. Technol. 2004, 38, 3195–3202. DOI: 10.1021/es0349204.
  • Arun, C.; Sivashanmugam, P. Enhanced Production of Biohydrogen from Dairy Waste Activated Sludge Pre-treated Using Multi Hydrolytic Garbage Enzyme Complex. Energy Convers. Manag. 2018, 164, 277–287. DOI: 10.1016/j.enconman.2018.02.095.
  • Mu, Y.; Yu, H.; Wang, G. Evaluation of Three Methods for Enriching H2 Producing Cultures from Anaerobic Sludge. Enzyme Microb. Technol. 2007, 40, 947–953. DOI: 10.1016/j.enzmictec.2006.07.033.
  • Negi, S.; Dhar, H.; Hussain, A.; Kumar, S. Biomethanation Potential for Co-digestion of Municipal Solid Waste and Rice Straw: A Batch Study Bioresource Technology Biomethanation Potential for Co-digestion of Municipal Solid Waste and Rice Straw: A Batch Study. Bioresour. Technol. 2018, 254, 139–144. DOI: 10.1016/j.biortech.2018.01.070.
  • Mu, Y.; Wang, G.; Yu, H. Q. Kinetic Modeling of Batch Hydrogen Production Process by Mixed Anaerobic Cultures. Bioresour. Technol. 2006, 97, 1302–1307. DOI: 10.1016/j.biortech.2005.05.014.
  • Sethupathy, A.; Sivashanmugam, P. Investigation on Ultrasonication Mediated Biosurfactant Disintegration Method in Sludge Flocs for Enhancing Hydrolytic Enzymes Activity and Polyhydroxyalkanoates. Environ. Technol. 2018, 1–14. DOI: 10.1080/09593330.2018.1481887.
  • Kumar, M. D.; Tamilarasan, K.; Kaliappan, S.; Banu, J. R.; Rajkumar, M.; Kim, S. H. Surfactant Assisted Disperser Pretreatment on the Liquefaction of Ulva reticulata and Evaluation of Biodegradability for Energy Efficient Biofuel Production Through Nonlinear Regression Modelling. Bioresour. Technol. 2018, 255, 116–122. DOI: 10.1016/j.biortech.2018.01.116.
  • Lay, J.; Lee, Y.; Noike, T. Feasibility of Biological Hydrogen Production from Organic Fraction of Municipal Solid. Water Res. 1999, 33, 2579–2586. DOI: 10.1016/S0043-1354(98)00483-7.
  • Zhou, P.; Elbeshbishy, E.; Nakhla, G. Optimization of Biological Hydrogen Production for Anaerobic Co-digestion of Food Waste and Wastewater Biosolids. Bioresour. Technol. 2013, 130, 710–718. DOI: 10.1016/j.biortech.2012.12.069.
  • Wang, D.; Zeng, G.; Chen, Y.; Li, X. Effect of Polyhydroxyalkanoates on Dark Fermentative Hydrogen Production from Waste Activated Sludge. Water Res. 2015, 73, 311–322. DOI: 10.1016/j.watres.2015.01.017.
  • Kavitha, S.; Rajesh Banu, J.; Kumar, G.; Kaliappan, S.; Yeom, I. T. Profitable Ultrasonic Assisted Microwave Disintegration of Sludge Biomass: Modelling of Biomethanation and Energy Parameter Analysis. Bioresour. Technol. 2018, 254, 203–213. DOI: 10.1016/j.biortech.2018.01.072.
  • Tamilarasan, K.; Arulazhagan, P.; Rani, R. U.; Kaliappan, S.; Banu, J. R. Synergistic Impact of Sonic-tenside on Biomass Disintegration Potential: acidogenic and Methane Potential Studies, kinetics and Cost Analytics. Bioresour. Technol. 2018, 253, 256–261. DOI: 10.1016/j.biortech.2018.01.028.
  • Sharmila, V. G.; Banu, J. R.; Gunasekaren, M.; Angappane, S.; Yeom, I. T. Nano Layered TiO2 for Effective Bacterial Disintegration of Waste Activated Sludge and Biogas Production. J. Chem. Technol. Biotechnol. 2018, 244, 776–784.
  • Sethupathy, A.; Teja, G. R.; Arun, C.; Sivashanmugam, P. Study on Optimization of co-digestion Process Parameters for Enhancing Biohydrogen Production Using Response Surface Methodology. Energy Sources Part A Recover. Util. Environ. Eff. 2018, 40, 1753–1764. DOI: 10.1080/15567036.2018.1486909.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.