Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 7
235
Views
3
CrossRef citations to date
0
Altmetric
Articles

Pre-treatment of soft drink wastewater with a calcium-modified zeolite to improve electrooxidation of organic matter

, , , , &
Pages 617-627 | Received 17 Jul 2018, Accepted 28 Jan 2019, Published online: 27 Feb 2019

References

  • Abdel-Fatah, M. A.; Sherif, H. O.; Hawash, S. I. Design Parameters for Waste Effluent Treatment Unit from Beverages Production. Ain. Shams. Eng. J. 2017, 8, 305–310. DOI:10.1016/j.asej.2016.04.008.
  • Borja, R.; Banks, C. J. Semicontinuous Anaerobic Digestion of Soft Drink Wastewater in Immobilised Cell Bioreactors. Biotechnol. Lett. 1993, 15, 767–772. DOI:10.1007/BF01080153.
  • Namaghi, H. A.; Mousavi, S. M. Micellar-Enhanced Ultrafiltration of Soft Drink Wastewater Using Anionic and Mixed Anionic/nonionic Surfactants. J. Taiwan Inst. Chem. E. 2014, 45, 1850–1854. DOI:10.1016/j.jtice.2014.03.015.
  • Haroon, H.; Waseem, A.; Mahmood, Q. Treatment and Reuse of Wastewater from Beverage Industry. J. Chem. Soc. Pak. 2013, 35, 5–10.
  • Azeredo, D. R. P.; Alvarenga, V.; Sant'Ana, A. S.; Sabaa Srur, A. U. O. An Overview of Microorganisms and Factors Contributing for the Microbial Stability of Carbonated Soft Drinks. Food Res. Int. 2016, 82, 136–144. DOI:10.1016/j.foodres.2016.01.024.
  • Asadi, A.; Zinatizadeh, A. A.; Van Loosdrecht, M. A Novel Continuous Feed and Intermittent Discharge Airlift Bioreactor (CFIDAB) for Enhanced Simultaneous Removal of Carbon and Nutrients from Soft Drink Industrial Wastewater. Chem Eng J 2016, 292, 13–27. DOI:10.1016/j.cej.2016.01.110.
  • Sheldon, M. S.; Erdogan, I. G. Multi-stage EGSB/MBR Treatment of Soft Drink Industry Wastewater. Chem Eng J 2016, 285, 368–377. DOI:10.1016/j.cej.2015.10.021.
  • Wang, L. K.; Hung, Y. T.; Lo, H. H.; Yswee-Song Sengapijakis, C. Waste Treatment in the Food Processing Industry. In Soft Drink Waste Treatment; Shen J. P.; Seng, S.S.; Hung Y. T., Eds.; Taylor and Francis: Boca Raton, FL, 2005; pp. 255–270.
  • García-Morales, M. A.; Roa-Morales, G.; Barrera-Díaz, C.; Balderas-Hernández, P. Treatment of Soft Drink Process Wastewater by Ozonation, ozonation-H2O2 and Ozonation-coagulation Processes. J. Environ. Sci. Heal A 2012, 47, 22–30. DOI:10.1080/10934529.2012.629575.
  • Linares Hernández, I.; Barrera Díaz, C.; Valdés Cerecero, M.; Almazán Sánchez, P. T.; Castañeda Juárez, M.; Lugo Lugo, V. Soft Drink Wastewater Treatment by Electrocoagulation-Electrooxidation Processes. Environ. Technol. 2017, 38, 433–442. DOI:10.1080/09593330.2016.1196740.
  • Munter, R. Advanced Oxidation Processes-Current Status and Prospects. Proc. Estonian Acad. Sci. Chem. 2001, 50, 59–80.
  • Albuquerque, L. F.; Salgueiro, A. A.; Melo, JLdS.; Chiavone-Filho, O. Coagulation of Indigo Blue Present in Dyeing Wastewater Using a Residual Bittern. Sep. Purif. Technol. 2013, 104, 246–249. DOI:10.1016/j.seppur.2012.12.005.
  • Teutli-Sequeira, A.; Martínez-Miranda, V.; Solache-Ríos, M.; Linares-Hernández, I. Aluminum and Lanthanum Effects in Natural Materials on the Adsorption of Fluoride Ions. J. Fluor. Chem. 2013, 148, 6–13. DOI:10.1016/j.jfluchem.2013.01.015.
  • Latifah, O.; Ahmed, O. H.; Majid, N. M. A. Enhancing Nitrogen Availability from Urea Using Clinoptilolite Zeolite. Geoderma 2017, 306, 152–159.
  • Eaton, A. D.; Franson, M. A. H. American Public Health A, American Water Works A, Water Environment F. Standard Methods for the Examination of Water and Wastewater: American Public Health Association: Washington D. C.; 2005.
  • Kwon, M.; Kim, S.; Yoon, Y.; Jung, Y.; Hwang, T.-M.; Lee, J.; Kang, J.-W. Comparative Evaluation of Ibuprofen Removal by UV/H2O2 and UV/S2O82− processes for Wastewater Treatment. Chem. Eng. J. 2015, 269, 379–390. DOI:10.1016/j.cej.2015.01.125.
  • ]Wang, X.-X.; Wu, Y.-H.; Zhang, T.-Y.; Xu, X.-Q.; Dao, G.-H.; Hu, H.-Y. Simultaneous Nitrogen, phosphorous, and Hardness Removal from Reverse Osmosis Concentrate by Microalgae Cultivation. Water Res. 2016, 94, 215–224. DOI:10.1016/j.watres.2016.02.062.
  • Kumar, M.; Rao, M. S.; Deka, J. P.; Ramanathan, A. L.; Kumar, B. Integrated Hydrogeochemical, Isotopic and Geomorphological Depiction of the Groundwater Salinization in the Aquifer System of Delhi, India. J. Asian Earth Sci. 2015, 111, 936–947. DOI:10.1016/j.jseaes.2015.08.018.
  • Tavares, C. P.; Natural Zeolites, G. V.; Tsitsishvili, T. G.; Andronikashvili, G. N.; Kirov, L. D. Filizova (Translated by I. B. Potashnikov; translation editor: P. A. Williams) Ellis Horwood (Simon & Schuster International Limited). Zeolites, 1993, 13(6), 503.
  • Gutiérrez-Segura, E.; Solache-Ríos, M.; Fall, C.; Colín-Cruz, A. Influence of the pH on Distribution of Denim Blue in Water Fe-zeolitic Tuff System. Sep. Sci. Technol. 2012, 47, 723–728. DOI:10.1080/01496395.2011.620581.
  • Vázquez Mejía, G.; Martínez-Miranda, V.; Fall, C.; Linares-Hernández, I.; Solache-Ríos, M. Comparison of Fe–Al-Modified Natural Materials by an Electrochemical Method and Chemical Precipitation for the Adsorption of F − and as(V). Environ. Technol. 2016, 37, 558–568. DOI:10.1080/09593330.2015.1074724.
  • Montes-Luna, T.; Castruita de León, G.; García-Rodríguez, S.; Fuentes López, N.; Pérez Camacho, O.; Perera Mercado, G.; Na, +/C. + Aqueous Ion Exchange in Natural Clinoptilolite Zeolite for Polymer-Zeolite Composite Membranes Production and Their CH4/CO2/N2 Separation Performance. J. Nat. Gas Sci. Eng. 2018, 54, 47–53. DOI:10.1016/j.jngse.2018.03.007.
  • Cole, J. J.; Prairie, Y. T. Dissolved CO2 in Freshwater Systems. Encyclopedia of Inland Waters 2009, 2, 30–34.
  • De la Cruz, N.; Giménez, J.; Esplugas, S.; Grandjean, D.; de Alencastro, L. F.; Pulgarín, C. Degradation of 32 Emergent Contaminants by UV and Neutral Photo-Fenton in Domestic Wastewater Effluent Previously Treated by Activated Sludge. Water Res. 2012, 46, 1947–1957. DOI:10.1016/j.watres.2012.01.014.
  • D la Cruz, N.; Esquius, L.; Grandjean, D.; Magnet, A.; Tungler, A.; de Alencastro, L. F.; Pulgarín, C. Degradation of Emergent Contaminants by UV, UV/H2O2 and Neutral photo-Fenton at Pilot Scale in a Domestic Wastewater Treatment Plant. Water Res. 2013, 47, 5836–5845. DOI:10.1016/j.watres.2013.07.005.
  • Tchobanoglous, G.; Burton, F. L.; Stensel, H. D.; Metcalf, E. Chemical Unit Processes. In Wastewater Engineering: Treatment and Reuse. McGraw-Hill: New York, NY, 2003; pp 475–544.
  • Abdessamad, N.; Akrout, H.; Hamdaoui, G.; Elghniji, K.; Ksibi, M.; Bousselmi, L. Evaluation of the Efficiency of Monopolar and Bipolar BDD Electrodes for Electrochemical Oxidation of Anthraquinone Textile Synthetic Effluent for Reuse. Chemosphere 2013, 93, 1309–1316. DOI:10.1016/j.chemosphere.2013.07.011.
  • Kapałka, A.; Fóti, G. Comninellis, C. Basic principles of the electrochemical mineralization of organic pollutants for wastewater treatment. In: Comninellis C, Chen G, Eds.; Electrochemistry for the Environment. New York, NY: Springer; 2010; pp. 1–23.
  • Rodrigo, M. A.; Oturan, N.; Oturan, M. A. Electrochemically Assisted Remediation of Pesticides in Soils and Water: A Review. Chem. Rev. 2014, 114, 8720–8745. DOI:10.1021/cr500077e.
  • Rabaaoui, N.; Allagui, M. S. Anodic Oxidation of Salicylic Acid on BDD Electrode: Variable Effects and Mechanisms of Degradation. J. Hazard. Mater. 2012, 243, 187–192. DOI:10.1016/j.jhazmat.2012.10.016.
  • Ammar, H. B.; Brahim, M. B.; Abdelhédi, R.; Samet, Y. Green Electrochemical Process for Metronidazole Degradation at BDD Anode in Aqueous Solutions via Direct and Indirect Oxidation. Sep. Purif. Technol. 2016, 157, 9–16. DOI:10.1016/j.seppur.2015.11.027.
  • Panizza, M. Importance of electrode material in the electrochemical treatment of wastewater containing organic pollutants. In: Comninellis C, Chen G, Eds.; Electrochemistry for the Environment. New York, NY: Springer; 2010; pp. 25–54.
  • Cotillas, S.; Sánchez-Carretero, A.; Cañizares, P.; Sáez, C.; Rodrigo, M. A.; Electrochemical Synthesis of Peroxyacetic Acid Using Conductive Diamond Electrodes. Ind. Eng. Chem. Res. 2011, 50, 10889–10893. DOI:10.1021/ie2009422.
  • Gómez-Morales, J.; Hernández-Hernández, A.; Sazaki, G.; García-Ruiz, J. M.; Nucleation and Polymorphism of Calcium Carbonate by a Vapor Diffusion Sitting Drop Crystallization Technique. Cryst. Growth Des. 2010, 10, 963–969. DOI:10.1021/cg901279t.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.