Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 7
316
Views
12
CrossRef citations to date
0
Altmetric
Articles

Recovery of lanthanides from hydrocarbon cracking spent catalyst through chemical and biotechnological strategies

, , , ORCID Icon, ORCID Icon &
Pages 686-693 | Received 16 Oct 2018, Accepted 28 Jan 2019, Published online: 01 Mar 2019

References

  • Zou, C. Unconventional Petroleum Geology; Elsevier: Amsterdam, 2017; 500 p.
  • Jones, D. S. J.; Pujadó, P. R. Handbook of Petroleum Processing; Springer Science: Dordrecht, 2006; 1353 p.
  • Ferella, F.; Innocenzi, V.; Maggiore, F. Oil Refining Spent Catalysts: A Review of Possible Recycling Technologies. Resour. Conserv. Recycl. 2016, 108, 10–20.
  • Costa, A. F.; Pinto, J. C.; Salim, V. M. M.; Karam, J. C. Preparation of Siloxane-Modified FCC Catalysts for Reduction of Attrition Index and Increase of Accessibility. Bol. Tec. Petrobras 2004, 47, 255–265. (in Portuguese)
  • The Global Oil and Gas industry Association for Environmental and Social Issues - IPIECA. 2014. http://www.ipieca.org/resources/good-practice/petroleum-refinery-waste-management-and-minimization/ (accessed Ago 2018).
  • Wenzel, M.; Schnaars, K.; Kelly, N.; Götzke, L.; Robles, M. S.; Kretschmer, K.; Phuc, N. L.; Dang, T. T.; Nguyen, H. L.; Nguyen, A. D.; et al. Hydrometallurgical Recovery of Rare Earth Metals From Spent FCC Catalysts. In Rare Metal Technology 2016; Alam S., Kim H., Neelameggham N.R., Ouchi T., Oosterhof H. Eds.; Springer: Cham.
  • Silva, J. S. A.; Maranhão, T. A.; Oliveira, F. J. S.; Curtius, A. J.; Frescura, V. L. A. Determination of Rare Earth Elements in Spent Catalyst Samples from Oil Refinery by Dynamic Reaction Cell Inductively Coupled Plasma Mass Spectrometry. J. Braz. Chem. Soc. 2014, 25, 1062–1070.
  • Beolchini, F.; Fonti, V.; Ferella, F.; Vegliò, F. Metal Recovery From Spent Refinery Catalysts by Means of Biotechnological Strategies. J. Hazard. Mater. 2010, 178, 529–534.
  • Speight, J. G. The Chemistry and Technology of Petroleum; CRC Press: Boca Raton, 2006; 954 p.
  • Marafi, M.; Rana, M. S. Metal Leaching From Refinery Waste Hydroprocessing Catalyst. J. Environ. Sci. Health Part. A 2018, 53, 951–959.
  • Srichandan, H.; Pathak, A.; Kim, D. J.; Lee, S.-W. Optimization of Two-Step Bioleaching of Spent Petroleum Refinery Catalyst by Acidithiobacillus thiooxidans Using Response Surface Methodology. J. Environ. Sci. Health Part. A 2014, 49, 1740–1753.
  • Ferreira, P. F.; Sérvulo, E. F. C.; Costa, A. C. A.; Ferreira, D. M.; Godoy, M. L. D. P.; Oliveira, F. J. S. Bioleaching of Metals From a Diesel Hydrodesulfurization Spent Catalyst Employing Acidithiobacillus thiooxidans FG-01, 2017. Braz. J. Chem. Eng. 2017, 34, 119–129.
  • Ferreira, P. F.; Sérvulo, E. F. C.; Ferreira, D. M.; Oliveira, F. J. S. Assessment of Metal Recovery from Raw Spent Hydrodesulfurization Catalyst through Bioleaching and Chemical Leaching. Braz. J. Petrol. Gas 2016, 9, 137–145. DOI:10.5419/bjpg2015-0014.
  • Bayraktar, O. Bioleaching of Nickel from Equilibrium Fluid Catalytic Cracking Catalysts. World J. Microbiol. Biotechnol. 2005, 21, 661–665.
  • Aung, K. M. M.; Ting, Y.-P. Bioleaching of Spent Fluid Catalytic Cracking Catalyst Using Aspergillus niger. J. Biotechnol. 2005, 116, 159–170.
  • Hassanien, W. A. G.; Desouky, O. A.,N.; Hussien, S. S. E. Bioleaching of Some Rare Earth Elements From Egyptian Monazite Using Aspergillus ficuum and Pseudomonas aeruginosa. Walailak J. Sci. Technol. 2014, 11, 809–823.
  • Amin, M. M.; El-Aassy, I. E.; El-Feky, M. G.; Sallam, A. M.; El-Sayed, E. M.; Nada, A. A.; Harpy, N. M. Fungal Leaching of Rare Earth Elements From Lower Carboniferous Carbonaceous Shales, Southwestern Sinai, Egypt. Romanian J. Biophys. 2014, 24, 25–41.
  • Innocenzi, V.; Ferella, F.; Michelis, I.; Veglió, F. Treatment of Fluid Catalytic Cracking Spent Catalysts to Recover Lanthanum and Cerium: Comparison Between Selective Precipitation and Solvent Extraction. J. Ind. Eng. Chem. 2015, 24, 92–97.
  • Velázquez, S.; Monzó, J.; Borrachero, M. V.; Soriano, L.; Payá, J. Evaluation of the Pozzolanic Activity of Spent FCC Catalyst/fly Ash Mixtures in Portland Cement Pastes. Thermochim. Acta 2016, 632, 29–36. DOI:10.1016/j.tca.2016.03.011.
  • USEPA - United State Environmental Protection Agency, 1980. Samplers and sampling procedures for hazardous wastes streams; Municipal Environmental Research Laboratory. http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=30000APW.txt (accessed Feb 1, 2019).
  • USEPA - United State Environmental Protection Agency, 1995. Procedures for laboratory analysis of surface/bulk dust loading samples, Research Triangle Park North Caroline, http://www.epa.gov/ttnchie1/ap42/appendix/app-c2.pdf (accessed Feb 1, 2019)
  • USEPA - United State Environmental Protection Agency, 2007.Test methods for evaluating solid waste, SW-846. Office of solid waste and emergency response, revision 6. http://www.epa.gov/osw/hazard/testmethods/sw846/. (accessed Jun 9, 2015)
  • Brazilian Association of Technical Norms. 10004 – Solid Waste – Classification; ABNT: Rio de Janeiro, 2014; pp 1–55 (in Portuguese).
  • Imandi, S. B.; Bandaru, V. R.; Somalanka, S. R.; Garapati, H. R. Optimization of Medium Constituents for the Production of Citric Acid From Byproduct Glycerol Using Doehlert Experimental Design. Enzym. Microb. Technol. 2007, 40, 1367–1372. DOI:10.1016/j.enzmictec.2006.10.012.
  • Kinoshita, T.; Akita, S.; Kobayashi, N.; Nii, S.; Kawaizumi, F.; Takahashi, K. Metal Recovery From Non-mounted Printed Wiring Boards via Hydrometallurgical Processing. Hydrometallurgy 2003, 69, 73–79. DOI:10.1016/S0304-386X(03)00031-8.
  • Silva, J. E.; Paiva, A. P.; Soares, D.; Labrincha, A.; Castro, F. Solvent Extraction Applied to the Recovery of Heavy Metals From Galvanic Sludge. J. Hazard. Mater. 2005, 120, 113–118. DOI:10.1016/j.jhazmat.2004.12.008.
  • Marafi, M.; Stanislaus, A. Spent Hydroprocessing Catalyst Management: A Review. II. Advances in Metal Recovery and Safe Disposal Methods. Resour. Conserv. Recycl. 2008, 53, 1–26. DOI:10.1016/j.resconrec.2008.08.005.
  • Marafi, M.; Stanislaus, A. Options and Processes for Spent Catalyst Handling and Utilization. J. Hazard. Mater. 2003, 101, 123–132.
  • Qu, Y.; Lian, B. Bioleaching of Rare Earth and Radioactive Elements From Red Mud Using Penicillium Tricolor RM-10. Bioresour. Technol. 2013, 136, 16–23. DOI:10.1016/j.biortech.2013.03.070.
  • Thompson, V. S.; Gupta, M.; Jin, H.; Vahidi, E.; Yim, M.; Jindra, M. A.; Nguyen, V.; Fujita, Y.; Sutherland, J. W.; Jiao, Y.; et al. Techno-Economic and Life Cycle Analysis for Bioleaching Rare Earth Elements From Waste Materials. ACS Sustain. Chem. Eng. 2018, 6, 1602–1609. DOI:10.1021/acssuschemeng.7b02771.
  • Zhao, Z.; Qiu, Z.; Yang, J.; Lu, S.; Cao, L.; Zhang, W.; Xu, Y. Recovery of Rare Earth Elements From Spent Fluid Catalytic Cracking Catalysts Using Leaching and Solvent Extraction Techniques. Hydrometallurgy 2017, 167, 183–188. DOI:10.1016/j.hydromet.2016.11.013.
  • Wang, J.; Huang, X.; Wang, L.; Wang, Q.; Yan, Y.; Zhao, N.; Cui, D.; Feng, Z. Kinetics Study on the Leaching of Rare Earth and Aluminum from FCC Catalyst Waste Slag Using Hydrochloric Acid. Hydrometallurgy 2017, 171, 312–319. DOI:10.1016/j.hydromet.2017.06.007.
  • T.P, W. Crude Glycerol: A Feedstock for Organic Acid Production by Microbial Bioconversion. J. Microbial. Biochem. Technol. 2012, 4, 4.
  • Hopfe, S.; Kutschke, S.; Pollmann, K. Screening of different microorganisms for the biological leaching of rare earth elements from fluorescent phosphor. Proceedings of the World Congress on New Technologies (NewTech 2015), Barcelona, Spain, 2015, 120, 1–2.
  • Max, B.; Salgado, J. M.; Rodríguez, N.; Cortés, S.; Converti, A.; Domínguez, J. M. Biotechnological Production of Citric Acid. Braz. J. Microbiol. 2010, 41, 862–875. DOI:10.1590/S1517-83822010000400005.
  • Rymowicz, W.; Rywinska, A.; Gladkowski, W. Simultaneous Production of Citric Acid and Erythritol from Crude Glycerol by Yarrowia lipolytica Wratislavia K1. Chem. Pap. 2008, 62, 239–246.
  • Abad, S.; Turon, X. Valorization of Biodiesel Derived Glycerol as a Carbon Source to Obtain Added-value Metabolites: Focus on Polyunsaturated Fatty Acids. Biotechnol. Adv. 2012, 30, 733–741. DOI:10.1016/j.biotechadv.2012.01.002.
  • Jha, M. K.; Kumari, K.; Panda, R.; Kumar, J. R.; Yoo, K.; Lee, J. Y. Review on Hydrometallurgical Recovery of Rare Earth Metals. Hydrometallurgy 2016, 161, 2–26.
  • Hewedy, M. A.; Rushdy, A. A.; Kamal, N. M. Bioleaching of Rare Earth Elements and Uranium from Sinai Soil, Egypt Using Actinomycetes. Egypt. J. Hosp. Med. 2013, 53, 909–917. DOI:10.12816/0001653.
  • Reed, D. W.; Fujita, Y.; Daubaras, D. L.; Jiao, Y.; Thompson, V. S. Bioleaching of Rare Earth Elements from Waste Phosphors and Cracking Catalysts. Hydrometallurgy 2016, 166, 34–40. DOI:10.1016/j.hydromet.2016.08.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.