Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 7
139
Views
2
CrossRef citations to date
0
Altmetric
Articles

Improvement of the thermophilic anaerobic digestion and hygienisation of waste activated sludge by synergistic pretreatment

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 694-700 | Received 27 Nov 2018, Accepted 28 Jan 2019, Published online: 27 Feb 2019

References

  • Gagliano, M. C.; Braguglia, C. M.; Gianico, A.; Mininni, G.; Nakamura, K.; Rossetti, S. Thermophilic Anaerobic Digestion of Thermal Pretreated Sludge: Role of Microbial Community Structure and Correlation with Process Performances. Water Res. 2015, 68, 498–509. DOI:10.1016/j.watres.2014.10.031.
  • Song, Y.-C.; Kwon, S.-J.; Woo, J.-H. Mesophilic and Thermophilic Temperature Co-phase Anaerobic Digestion Compared with Single-stage Mesophilic- and Thermophilic Digestion of Sewage Sludge. Water Res. 2004, 38, 1653–1662. DOI:10.1016/j.watres.2003.12.019.
  • Gebreeyessus, G. D.; Jenicek, P. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review. Bioengineering (Basel) 2016, 3, 15. DOI:10.3390/bioengineering3020015.
  • Kardos, L.; Juhász, A.; Palkó, G. Y.; Oláh, J.; Barkács, J.; Záray, G. Y. Comparing of Mesophilic and Thermophilic Anaerobic Fermented Sewage Sludge Based on Chemical and Biochemical Tests. Appl. Ecol. Environ. Res. 2011, 9, 293–302. DOI:10.15666/aeer/0903_293302.
  • Adekunle, K. F.; Okolie, J. A. A Review of Biochemical Process of Anaerobic Digestion. ABB 2015, 06, 205–212. DOI:10.4236/abb.2015.63020.
  • Zhen, G.; Lu, X.; Kato, H.; Zhao, Y.; Li, Y.-Y. Overview of Pretreatment Strategies for Enhancing Sewage Sludge Disintegration and Subsequent Anaerobic Digestion: Current Advances, Full-scale Application and Future Perspectives. Renew. Sustain. Energy Rev. 2017, 69, 559–577. DOI:10.1016/j.rser.2016.11.187.
  • Grubel, K.; Machnicka, A.; Nowicka, E.; Wacławek, S.; Grűbel, K.; Machnicka, A.; Nowicka, E.; Wacławek, S. Mesophilic-thermophilic Fermentation Process of Waste Activated Sludge after Hybrid Disintegration. Ecol. Chem. Eng. S 2014, 21, 125–136.
  • Pilli, S.; Yan, S.; Tyagi, R. D.; Surampalli, R. Y. Thermal Pretreatment of Sewage Sludge to Enhance Anaerobic Digestion: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 669–702. DOI:10.1080/10643389.2013.876527.
  • Banu, J. R.; Kavitha, S. Various Sludge Pretreatments: Their Impact on Biogas Generation. In: Waste Biomass Management – A Holistic Approach; Singh, L.; Kalia, V., Eds.; Cham: Springer, 2017, pp 39–71.
  • Carrère, H.; Dumas, C.; Battimelli, A.; Batstone, D. J.; Delgenès, J. P.; Steyer, J. P.; Ferrer, I. Pretreatment Methods to Improve Sludge Anaerobic Degradability: A Review. J. Hazard. Mater. 2010, 183, 1–15. DOI:10.1016/j.jhazmat.2010.06.129.
  • Montusiewicz, A.; Lebiocka, M.; Rożej, A.; Zacharska, E.; Pawłowski, L. Freezing/Thawing Effects on Anaerobic Digestion of Mixed Sewage Sludge. Bioresour. Technol. 2010, 101, 3466–3473. DOI:10.1016/j.biortech.2009.12.125.
  • Diak, J.; Örmeci, B.; Proux, C. Freeze–Thaw Treatment of RBC Sludge from a Remote Mining Exploration Facility in Subarctic Canada. Water Sci. Technol. 2011, 63, 1309–1313. DOI:10.2166/wst.2011.376.
  • Gogate, P. R.; Shirgaonkar, I. Z.; Sivakumar, M.; Senthilkumar, P.; Vichare, N. P.; Pandit, A. B. Cavitation Reactors: Efficiency Assessment Using a Model Reaction. AIChE J. 2001, 47, 2526–2538. DOI:10.1002/aic.690471115.
  • Vichare, N. P.; Gogate, P. R.; Pandit, A. B. Optimization of Hydrodynamic Avitation Using a Model Reaction. Chem. Eng. Technol. 2000, 23, 683–690. DOI:10.1002/1521-4125(200008)23:8<683::AID-CEAT683>3.3.CO;2-0.
  • Senthil Kumar, P.; Siva Kumar, M.; Pandit, A. Experimental Quantification of Chemical Effects of Hydrodynamic Cavitation. Chem. Eng. Sci. 2000, 55, 1633–1639. DOI:10.1016/S0009-2509(99)00435-2.
  • Machnicka, A.; Nowicka, E.; Grübel, K. Disintegration as a Key-Step in Pre-treatment of Surplus Activated Sludge. J. Water Chem. Technol. 2017, 39, 47–55. DOI:10.3103/S1063455X17010088.
  • Mirota, K.; Grübel, K.; Machnicka, A. Design and Assessment of Cavitational Device for Enhancement of Sewage Sludge Fermentation. Ochr. Sr. 2011, 33, 47–52.
  • Müller, J. Disintegration as a Key-step in Sewage Sludge Treatment. Water Sci. Technol. 2000, 41, 123–130. DOI:10.2166/wst.2000.0151.
  • Elliott, A.; Mahmood, T. Pretreatment Technologies for Advancing Anaerobic Digestion of Pulp and Paper Biotreatment Residues. Water Res. 2007, 41, 4273–4286. DOI:10.1016/j.watres.2007.06.017.
  • Wett, B.; Phothilangka, P.; Eladawy, A. Systematic Comparison of Mechanical and Thermal Sludge Disintegration Technologies. Waste Manage. 2010, 30, 1057–1062. DOI:10.1016/j.wasman.2009.12.011.
  • Yi, W. G.; Lo, K. V.; Mavinic, D. S. Effects of Microwave, Ultrasonic and Enzymatic Treatment on Chemical and Physical Properties of Waste-Activated Sludge. J. Environ. Sci. Health A 2014, 49, 203–209. DOI:10.1080/10934529.2013.838880.
  • Kuglarz, M.; Karakashev, D.; Angelidaki, I. Microwave and Thermal Pretreatment as Methods for Increasing the Biogas Potential of Secondary Sludge from Municipal Wastewater Treatment Plants. Bioresour. Technol. 2013, 134, 290–297. DOI:10.1016/j.biortech.2013.02.001.
  • Luo, W.; Zhu, L.; Wang, N.; Tang, H.; Cao, M.; She, Y. Efficient Removal of Organic Pollutants with Magnetic Nanoscaled BiFeO3 as a Reusable Heterogeneous Fenton-like Catalyst. Environ. Sci. Technol. 2010, 44, 1786–1791. DOI:10.1021/es903390g.
  • Bohdziewicz, J.; Kuglarz, M.; Grübel, K. Influence of Microwave Pre-treatment on the Digestion and Hygienisation of Waste Activated Sludge. Ecol. Chem. Eng. S 2014, 21, 447–464. DOI:10.2478/eces-2014-0033.
  • Park, W.-J.; Ahn, J.-H. Effects of Microwave Pretreatment on Mesophilic Anaerobic Digestion for Mixture of Primary and Secondary Sludges Compared with Thermal Pretreatment. Environ. Eng. Res. 2011, 16, 103–109. DOI:10.4491/eer.2011.16.2.103.
  • Bohdziewicz, J.; Kuglarz, M.; Grübel, K. The Influence of Microwave Irradiation on the Increase of Waste Activated Sludge Biodegradability. Arch. Civ Eng. Environ. 2011, 4, 123–130.
  • Şahinkaya, S.; Sevimli, M. F. Synergistic Effects of Sono-Alkaline Pretreatment on Anaerobic Biodegradability of Waste Activated Sludge. J. Ind. Eng. Chem. 2013, 19, 197–206. DOI:10.1016/j.jiec.2012.08.002.
  • Zhou, Z.; Yang, Y.; Li, X. Effects of Ultrasound Pretreatment on the Characteristic Evolutions of Drinking Water Treatment Sludge and its Impact on Coagulation Property of Sludge Recycling Process. Ultrason. Sonochem. 2015, 27, 62–71. DOI:10.1016/j.ultsonch.2015.04.018.
  • Aylin Alagöz, B.; Yenigün, O.; Erdinçler, A. Ultrasound Assisted Biogas Production from Co-digestion of Wastewater Sludges and Agricultural Wastes: Comparison with Microwave Pre-Treatment. Ultrason. Sonochem. 2018, 40, 193–200. DOI:10.1016/j.ultsonch.2017.05.014.
  • Salsabil, M. R.; Prorot, A.; Casellas, M.; Dagot, C. Pre-treatment of Activated Sludge: Effect of Sonication on Aerobic and Anaerobic Digestibility. Chem. Eng. J. 2009, 148, 327–335. DOI:10.1016/j.cej.2008.09.003.
  • Braguglia, C. M.; Gagliano, M. C.; Rossetti, S. High Frequency Ultrasound Pretreatment for Sludge Anaerobic Digestion: Effect on Floc Structure and Microbial Population. Bioresour. Technol. 2012, 110, 43–49. DOI:10.1016/j.biortech.2012.01.074.
  • Pérez-Elvira, S.; Fdz-Polanco, M.; Plaza, F. I.; Garralón, G.; Fdz-Polanco, F. Ultrasound Pre-treatment for Anaerobic Digestion Improvement. Water Sci. Technol. 2009, 60, 1525–1532. DOI:10.2166/wst.2009.484.
  • Erden, G.; Filibeli, A. Ultrasonic Pre-treatment of Biological Sludge: Consequences for Disintegration, anaerobic Biodegradability, and Filterability. J. Chem. Technol. Biotechnol. 2010, 85, 145–150. DOI:10.1002/jctb.2298.
  • Ali, M.; Zhang, J.; Raga, R.; Lavagnolo, M. C.; Pivato, A.; Wang, X.; Zhang, Y.; Cossu, R.; Yue, D. Effectiveness of Aerobic Pretreatment of Municipal Solid Waste for Accelerating Biogas Generation during Simulated Landfilling. Front. Environ. Sci. Eng. 2018, 12, 5.
  • Merlin Christy, P.; Gopinath, L. R.; Divya, D. A Review on Anaerobic Decomposition and Enhancement of Biogas Production Through Enzymes and Microorganisms. Renew. Sustain. Energy Rev. 2014, 34, 167–173. DOI:10.1016/j.rser.2014.03.010.
  • Merrylin, J.; Kumar, S. A.; Kaliappan, S.; Yeom, I.-T.; Banu, J. R. Biological Pretreatment of Non-flocculated Sludge Augments the Biogas Production in the Anaerobic Digestion of the Pretreated Waste Activated Sludge. Environ. Technol. 2013, 34, 2113–2123. DOI:10.1080/09593330.2013.810294.
  • Ge, H.; Jensen, P. D.; Batstone, D. J. Temperature Phased Anaerobic Digestion Increases Apparent Hydrolysis Rate for Waste Activated Sludge. Water Res. 2011, 45, 1597–1606. DOI:10.1016/j.watres.2010.11.042.
  • Jang, H. M.; Park, S. K.; Ha, J. H.; Park, J. M. Microbial Community Structure in a Thermophilic Aerobic Digester Used as a Sludge Pretreatment Process for the Mesophilic Anaerobic Digestion and the Enhancement of Methane Production. Bioresour. Technol. 2013, 145, 80–89. DOI:10.1016/j.biortech.2013.01.094.
  • You, M. Y.; Chai, T. Y.; Pan, Y.; Zhu, Y. N.; Cao, Y. H.; Li, X. J.; Xie, Y. H.; Han, J.; Zhu, T. Review of Excess Sludge Disintegration Research. AMR. 2013, 726–731, 2949–2955. DOI:10.4028/www.scientific.net/AMR.726-731.2949.
  • Gopi Kumar, S.; Merrylin, J.; Kaliappan, S.; Adish Kumar, S.; Tae Yeom, I.; Rajesh Banu, J. Effect of Cation Binding Agents on Sludge Solubilization Potential of Bacteria. Biotechnol. Bioproc. Eng. 2012, 17, 346–352. DOI:10.1007/s12257-011-0465-0.
  • Jang, H. M.; Cho, H. U.; Park, S. K.; Ha, J. H.; Park, J. M. Influence of Thermophilic Aerobic Digestion as a Sludge Pre-treatment and Solids Retention Time of Mesophilic Anaerobic Digestion on the Methane Production, sludge Digestion and Microbial Communities in a Sequential Digestion Process. Water Res. 2014, 48, 1–14. DOI:10.1016/j.watres.2013.06.041.
  • Bayr, S.; Kaparaju, P.; Rintala, J. Screening Pretreatment Methods to Enhance Thermophilic Anaerobic Digestion of Pulp and Paper Mill Wastewater Treatment Secondary Sludge. Chem. Eng. J. 2013, 223, 479–486. DOI:10.1016/j.cej.2013.02.119.
  • Kavitha, S.; Jayashree, C.; Adish Kumar, S.; Yeom, I. T.; Rajesh Banu, J. The Enhancement of Anaerobic Biodegradability of Waste Activated Sludge by Surfactant Mediated Biological Pretreatment. Bioresour. Technol. 2014, 168, 159–166. DOI:10.1016/j.biortech.2014.01.118.
  • Ikehata, K.; Gamal El-Din, M. Degradation of Recalcitrant Surfactants in Wastewater by Ozonation and Advanced Oxidation Processes: A Review. Ozone Sci. Eng. 2004, 26, 327–343. DOI:10.1080/01919510490482160.
  • Carbajo, J. B.; Petre, A. L.; Rosal, R.; Berná, A.; Letón, P.; García-Calvo, E.; Perdigón-Melón, J. A. Ozonation as Pre-treatment of Activated Sludge Process of a Wastewater Containing Benzalkonium Chloride and NiO Nanoparticles. Chem. Eng. J. 2016, 283, 740–749. DOI:10.1016/j.cej.2015.08.001.
  • Oller, I.; Malato, S.; Sánchez-Pérez, J. A. Combination of Advanced Oxidation Processes and Biological Treatments for Wastewater Decontamination – A Review. Sci. Total Environ. 2011, 409, 4141–4166. DOI:10.1016/j.scitotenv.2010.08.061.
  • Ak, M. S.; Muz, M.; Komesli, O. T.; Gökçay, C. F. Enhancement of Bio-gas Production and Xenobiotics Degradation During Anaerobic Sludge Digestion by Ozone Treated Feed Sludge. Chem. Eng. J. 2013, 230, 499–505. DOI:10.1016/j.cej.2013.06.113.
  • Silvestre, G.; Ruiz, B.; Fiter, M.; Ferrer, C.; Berlanga, J. G.; Alonso, S.; Canut, A. Ozonation as a Pre-treatment for Anaerobic Digestion of Waste-activated Sludge: effect of the Ozone Doses. Ozone. Sci. Eng. 2015, 37, 316–322. DOI:10.1080/01919512.2014.985817.
  • Parthiba Karthikeyan, O.; Trably, E.; Mehariya, S.; Bernet, N.; Wong, J. W. C.; Carrere, H. Pretreatment of Food Waste for Methane and Hydrogen Recovery: A Review. Bioresour. Technol. 2018, 249, 1025–1039. DOI:10.1016/j.biortech.2017.09.105.
  • Wang, Q.; Jiang, G.; Ye, L.; Yuan, Z. Enhancing Methane Production from Waste Activated Sludge Using Combined Free Nitrous Acid and Heat Pre-Treatment. Water Res. 2014, 63, 71–80. DOI:10.1016/j.watres.2014.06.010.
  • Yan, P.; Guo, J. S.; Wang, J.; Ji, F. Y.; Zhang, C. C.; Chen, Y. P.; Shen, Y. Enhanced Excess Sludge Hydrolysis and Acidification in an Activated Sludge Side-stream Reactor Process with Single-stage Sludge Alkaline Treatment: A Pilot Scale Study. Environ. Sci. Pollut. Res. 2016, 23, 22761–22770. DOI:10.1007/s11356-016-7490-7.
  • Suschka, J.; Kowalski, E.; Mazierski, J.; Grübel, K. Alkaline Solubilisation of Waste Activated Sludge (WAS) for Soluble Organic Substrate – (SCOD) Production. Arch. Environ. Prot. 2015, 41, 29–34. DOI:10.1515/aep-2015-0012.
  • Yan, Y.; Liu, Q.; Wang, K.; Jiang, L.; Yang, X.; Qian, J.; Dong, X.; Qiu, B. Enhanced Peroxydisulfate Electrochemiluminescence for Dopamine Biosensing Based on Au Nanoparticle Decorated Reduced Graphene Oxide. Analyst 2013, 138, 7101–7106. DOI:10.1039/c3an01533e.
  • Li, H.; Jin, Y.; Mahar, R.; Wang, Z.; Nie, Y. Effects and Model of Alkaline Waste Activated Sludge Treatment. Bioresour. Technol. 2008, 99, 5140–5144. DOI:10.1016/j.biortech.2007.09.019.
  • Silvestri, D.; Wacławek, S.; Gončuková, Z.; Padil, V. V. T.; Grübel, K.; Černík, M. A New Method for Assessment of the Sludge Disintegration Degree with the Use of Differential Centrifugal Sedimentation. Environ. Technol.. (in press). DOI:10.1080/09593330.2018.1477839.
  • Wacławek, S.; Grübel, K.; Chłąd, Z.; Dudziak, M.; Černík, M. Impact of Peroxydisulphate on Disintegration and Sedimentation Properties of Municipal Wastewater Activated Sludge. Chem. Pap. 2015, 69, 1473–1480.
  • Ji, Y.; Xie, W.; Fan, Y.; Shi, Y.; Kong, D.; Lu, J. Degradation of Trimethoprim by Thermo-activated Persulfate Oxidation: Reaction Kinetics and Transformation Mechanisms. Chem. Eng. J. 2016, 286, 16–24. DOI:10.1016/j.cej.2015.10.050.
  • Kim, C.; Ahn, J.-Y.; Kim, T. Y.; Shin, W. S.; Hwang, I. Activation of Persulfate by Nanosized Zero-valent Iron (NZVI): Mechanisms and Transformation Products of NZVI. Environ. Sci. Technol. 2018, 52, 3625–3633. DOI:10.1021/acs.est.7b05847.
  • Zhang, S.; Guo, H.; Du, L.; Liang, J.; Lu, X.; Li, N.; Zhang, K. Influence of NaOH and Thermal Pretreatment on Dewatered Activated Sludge Solubilisation and Subsequent Anaerobic Digestion: Focused on High-solid State. Bioresour. Technol. 2015, 185, 171–177. DOI:10.1016/j.biortech.2015.02.050.
  • Wacławek, S.; Lutze, H. V.; Grübel, K.; Padil, V. V. T.; Černík, M.; Dionysiou, D. D. Chemistry of Persulfates in Water and Wastewater Treatment: A Review. Chem. Eng. J. 2017, 330, 44–62. DOI:10.1016/j.cej.2017.07.132.
  • Grübel, K.; Machnicka, A.; Nowicka, E.; Wacławek, S. Fermentacja Mezofilowo-termofilowa Osadu Dezintegrowanego w Procesie Hybrydowym. Proc. ECOpole 2013, 7, 567–573.
  • Suschka, J.; Grübel, K. Low Intensity Surplus Activated Sludge Pretreatment before Anaerobic Digestion. Arch. Environ. Prot. 2016, 43, 50–57. DOI:10.1515/aep-2017-0038.
  • Grübel, K.; Wacławek, S.; Machnicka, A.; Nowicka, E. Synergetic Disintegration of Waste Activated Sludge: Improvement of Anaerobic Digestion and Higienization of Sludge. J. Environ. Sci. Health A 2018, 53, 1067–1074.
  • Grübel, K.; Suschka, J. Hybrid Alkali-Hydrodynamic Disintegration of Waste-activated Sludge Before Two-stage Anaerobic Digestion Process. Environ. Sci. Pollut. Res. Int. 2015, 22, 7258–7270. DOI:10.1007/s11356-014-3705-y.
  • Zhang, Y.; Zhang, P.; Ma, B.; Wu, H.; Zhang, S.; Xu, X. Sewage Sludge Disintegration by High-Pressure Homogenization: A Sludge Disintegration Model. J. Environ. Sci. 2012, 24, 814–820. DOI:10.1016/S1001-0742(11)60834-6.
  • Rafique, R.; Poulsen, T. G.; Nizami, A.-S.; Asam, Z.-Z.; Murphy, J. D.; Kiely, G. Effect of Thermal, Chemical and Thermo-Chemical Pre-treatments to Enhance Methane Production. Energy 2010, 35, 4556–4561. DOI:10.1016/j.energy.2010.07.011.
  • Uma Rani, R.; Adish Kumar, S.; Kaliappan, S.; Yeom, I. T.; Rajesh Banu, J. Enhancing the Anaerobic Digestion Potential of Dairy Waste Activated Sludge by Two Step Sono-Alkalization Pretreatment. Ultrason. Sonochem. 2014, 21, 1065–1074. DOI:10.1016/j.ultsonch.2013.11.007.
  • Yu, G. H.; He, P. J.; Shao, L. M.; Zhu, Y. S. Extracellular Proteins, Polysaccharides and Enzymes Impact on Sludge Aerobic Digestion after Ultrasonic Pretreatment. Water Res. 2008, 42, 1925–1934. DOI:10.1016/j.watres.2007.11.022.
  • APHA Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, 22nd ed.; Water Environment Federation: Washington, DC, 2012.
  • Yi, H.; Han, Y.; Zhuo, Y. Effect of Combined Pretreatment of Waste Activated Sludge for Anaerobic Digestion Process. Proc. Environ. Sci. 2013, 18, 716–721. DOI:10.1016/j.proenv.2013.04.097.
  • Bonilla, N.; Santiago, T.; Marcos, P.; Urdaneta, M.; Domingo, J. S.; Toranzos, G. A. Enterophages, a Group of Phages Infecting Enterococcus faecalis, and Their Potential as Alternate Indicators of Human Faecal Contamination. Water Sci. Technol. 2010, 61, 293–300. DOI:10.2166/wst.2010.815.
  • Santiago-Rodríguez, T. M.; Dávila, C.; González, J.; Bonilla, N.; Marcos, P.; Urdaneta, M.; Cadete, M.; Monteiro, S.; Santos, R.; Domingo, J. S.; Toranzos, G. A. Characterization of Enterococcus faecalis-infecting Phages (enterophages) as Markers of Human Fecal Pollution in Recreational Waters. Water Res. 2010, 44, 4716–4725. DOI:10.1016/j.watres.2010.07.078.
  • Vijayavel, K.; Byappanahalli, M. N.; Ebdon, J.; Taylor, H.; Whitman, R. L.; Kashian, D. R. Enterococcus Phages as Potential Tool for Identifying Sewage Inputs in the Great Lakes Region. J. Great Lakes Res. 2014, 40, 989–993. DOI:10.1016/j.jglr.2014.09.011.
  • Purnell, S. E.; Ebdon, J. E.; Taylor, H. D. Bacteriophage Lysis of Enterococcus Host Strains: A Tool for Microbial Source Tracking?. Environ. Sci. Technol. 2011, 45, 10699–10705. DOI:10.1021/es202141x.
  • Ding, H. H.; Chang, S.; Liu, Y. Biological Hydrolysis Pretreatment on Secondary Sludge: Enhancement of Anaerobic Digestion and Mechanism Study. Bioresour. Technol. 2017, 244, 989–995. DOI:10.1016/j.biortech.2017.08.064.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.