Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 9
171
Views
6
CrossRef citations to date
0
Altmetric
Articles

Sorption of divalent heavy metal ions onto functionalized biogenic hydroxyapatite with caffeic acid and 3,4-dihydroxybenzoic acid

ORCID Icon, , , , &
Pages 899-905 | Received 31 Jan 2019, Accepted 08 Apr 2019, Published online: 02 May 2019

References

  • Haider, A.; Haider, S.; Han, S. S.; Kang, I. K. Recent Advances in the Synthesis, Functionalization and Biomedical Applications of Hydroxyapatite: A Review. RSC Adv. 2017, 7, 7442–7458. DOI: 10.1039/C6RA26124H.
  • Piccirillo, C.; Castro, P. M. L. Calcium Hydroxyapatite-Based Photocatalysts for Environment Remediation: Characteristics, Performances and Future Perspectives. J. Environ. Manage. 2017, 193, 79–91. DOI: 10.1016/j.jenvman.2017.01.071.
  • Dinglin, Z.; Huawen, Z.; Xianying, Z.; Yimin, L.; Hua, C.; Xianjun, L. Application of Hydroxyapatite as Catalyst and Catalyst Carrier. Prog. Chem. 2011, 23, 687–694.
  • Cummings, L. J.; Snyder, M. A.; Brisack, K. Protein Chromatography on Hydroxyapatite Columns. Method Enzymol. 2009, 463, 387–404.
  • Monteil-Rivera, F.; Fedoroff, M. Sorption of Inorganic Species on Apatites from Aqueous Solutions. In Encyclopedia of Surface & Colloid Science, 2nd ed.; Somasudaran, P., Ed.; Boca Raton, FL: CRC Press; 2006. p. 5700–5725.
  • Narasaraju, T. S. B.; Phebe, D. E. Some Physico-Chemical Aspects of Hydroxylapatite. J. Mater. Sci. 1996, 31, 1–21. DOI: 10.1007/BF00355120.
  • Manning, D. A. C. Phosphate Minerals, Environmental Pollution and Sustainable Agriculture. Elements 2008, 4, 105–108. DOI: 10.2113/GSELEMENTS.4.2.105.
  • Wopenka, B.; Pasteris, J. D. A Mineralogical Perspective on the Apatite in Bone. Mat. Sci. Eng. C 2005, 25, 131–143. DOI: 10.1016/j.msec.2005.01.008.
  • European Commission Report on Critical Raw Materials and the Circular Economy. Commission Staff Working Document SWD (2018) 36 final. http://ec.europa.eu/docsroom/documents/27348 (accessed Jan 20, 2019).
  • Schoumans, O. F.; Bouraoui, F.; Kabbe, C.; Oenema, O.; van Dijk, K. C. Phosphorus Management in Europe in a Changing World. Ambio 2015, 44, 180–S192.
  • Kizilkaya, B.; Tekinay, A. A.; Dilgin, Y. Adsorption and Removal of Cu(II) Ions from Aqueous Solution Using Pretreated Fish Bones. Desalination 2010, 264, 37–47. DOI: 10.1016/j.desal.2010.06.076.
  • Dimović, S.; Smičiklas, I.; Plećaš, I.; Antonović, D.; Mitrić, M. Comparative Study of Differently Treated Animal Bones for Co2+ Removal. J. Hazard. Mater. 2009, 164, 279–287. DOI: 10.1016/j.jhazmat.2008.08.013.
  • Park, Y.; Shin, W. S.; Choi, S. J. Removal of Cobalt and Strontium from Groundwater by Sorption onto Fishbone. J. Radioanal. Nucl. Chem. 2013, 295, 789–799. DOI: 10.1007/s10967-012-1959-8.
  • Chatterjee, S.; Jha, S.; De, S. Novel Carbonized Bone Meal for Defluoridation of Groundwater: Batch and Column Study. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2018, 53, 832–846. DOI: 10.1080/10934529.2018.1455378.
  • Šljivić-Ivanović, M.; Smičiklas, I.; Milenković, A.; Dojčinović, B.; Babić, B.; Mitrić, M. Evaluation of the Effects of Treatment Factors on the Properties of Bio-Apatite Materials. J. Mater. Sci. 2015, 50, 354–365. DOI: 10.1007/s10853-014-8594-4.
  • Ghanei, R.; Dermani, K. R.; Salehi, Y.; Mohammadi, M. Waste Animal Bone as Support for CaO Impregnation in Catalytic Biodiesel Production from Vegetable Oil. Waste Biomass Valor. 2016, 7, 527–532. DOI: 10.1007/s12649-015-9473-1.
  • Songbo, N.; Yanbao, L.; Xiumei, W. Preparation, Application and Functionalization of Hydroxyapatite Microspheres. Prog. Chem. 2011, 23, 231–245.
  • Smičiklas, I.; Papan, J.; Lazić, V.; Lončarević, D.; Ahrenkiel, S. P.; Nedeljković, J. M. Functionalized Biogenic Hydroxyapatite with 5-Aminosalicylic Acid – Sorbent for Efficient Separation of Pb2+ and Cu2+ Ions. J. Environ. Chem. Eng. 2017, 5, 3759–3765. DOI: 10.1016/j.jece.2017.07.027.
  • Bachoua, H.; Renaudin, G.; Badraoui, B.; Leroux, F.; Debbabi, M.; Nedele, J. M. Preparation and Characterization of Functionalized Hybrid Hydroxyapatite from Phosphorite and Its Potential Application to Pb2+ Remediation. J. Sol-Gel Sci. Technol. 2016, 78, 621–631. DOI: 10.1007/s10971-016-3978-3.
  • Saoiabi, S.; Achelhi, K.; Masse, S.; Saoiabi, A.; Laghzizil, A.; Coradin, T. Organo-Apatites for Lead Removal from Aqueous Solutions: A Comparison between Carboxylic Acid and Aminophosphonate Surface Modification. Colloids Surf. A 2013, 419, 180–185. DOI: 10.1016/j.colsurfa.2012.12.005.
  • Chirdon, W. M.; O'Brien, W. J.; Robertson, R. E. Adsorption of Catechol and Comparative Solutes on Hydroxyapatite. J. Biomed. Mater. Res. Part B Appl. Biomater. 2003, 66, 532–538. DOI: 10.1002/jbm.b.10041.
  • Sebei, H.; Minh, D. P.; Lyczko, N.; Sharrock, P.; Nzihou, A. Hydroxyapatite-Based Sorbents: Elaboration, Characterization and Application for the Removal of Catechol from the Aqueous Phase. Environ. Technol. 2017, 38, 2611–2620. DOI: 10.1080/09593330.2016.1271829.
  • Savić, T. D.; Janković, I. A.; Šaponjić, Z. V.; Čomor, M. I.; Veljković, D. Ž.; Zarić, S. D.; Nedeljković, J. M. Surface Modification of Anatase Nanoparticles with Fused Catecholate Type Ligands: A Combined DFT and Experimental Study of Optical Properties. Nanoscale 2012, 4, 1612–1619. DOI: 10.1039/c2nr11501h.
  • Milićević, B.; Đorđević, V.; Lončarević, D.; Ahrenkiel, S. P.; Dramićanin, M. D.; Nedeljković, J. M. Visible Light Absorption of Surface Modified TiO2 Powders with Bidentate Benzene Derivatives. Micropor. Mesopor. Mat. 2015, 217, 184–189. DOI: 10.1016/j.micromeso.2015.06.028.
  • Higashimoto, S.; Nishi, T.; Yasukawa, M.; Azuma, M.; Sakata, Y.; Kobayashi, H. Photocatalysis of Titanium Dioxide Modified by Catechol-Type Interfacial Surface Complexes (ISC) with Substitued Groups. J. Catal. 2015, 329, 286–290. DOI: 10.1016/j.jcat.2015.05.010.
  • Zhang, T.; Wojtal, P.; Rubel, O.; Zhitomirsky, I. Density Functional Theory and Experimental Studies of Caffeic Acid Adsorption on Zinc Oxide and Titanium Dioxide Nanoparticles. RSC Adv. 2015, 5, 106877–106885. DOI: 10.1039/C5RA21511K.
  • Vukoje, I.; Kovač, T.; Džunuzović, J.; Džunuzović, E.; Lončarević, D.; Ahrenkiel, S. P.; Nedeljković, J. M. Photocatalytic Ability of Visible-Light-Responsive TiO2 Nanoparticles. J. Phys. Chem. C 2016, 120, 18560–18569. DOI: 10.1021/acs.jpcc.6b04293.
  • Medić, M. M.; Vasić, M.; Zarubica, A. R.; Trandafilović, L. V.; Dražić, G.; Dramićanin, M. D.; Nedeljković, J. M. Enhanced Photoredox Chemistry in Surface-Modified Mg2TiO4 Nano-Powders with Bidentate Benzene Derivatives. RSC Adv. 2016, 6, 94780–94786. DOI: 10.1039/C6RA16284C.
  • Đorđević, V.; Dostanić, J.; Lončarević, D.; Ahrenkiel, S. P.; Sredojević, D. N.; Švrakić, N.; Belić, M.; Nedeljković, J. M. Hybrid Visible-Light Responsive Al2O3 Particles. Chem. Phys. Lett. 2017, 685, 416–421. DOI: 10.1016/j.cplett.2017.08.012.
  • Đorđević, V.; Sredojević, D. N.; Dostanić, J.; Lončarević, D.; Ahrenkiel, S. P.; Švrakić, N.; Brothers, E.; Belić, M.; Nedeljković, J. M. Visible Light Absorption of Surface-Modified Al2O3 Powders: A Comparative DFT and Experimental Study. Micropor. Mesopor. Mat. 2019, 273, 41–49. DOI: 10.1016/j.micromeso.2018.06.053.
  • Bystrov, V. S.; Piccirillo, C.; Tobaldi, D. M.; Castro, P. M. L.; Coutinho, J.; Kopyl, S.; Pullar, R. C. Oxygen Vacancies, the Optical Band Gap (Eg) and Photocatalysis of Hydroxyapatite: Comparing Modelling with Measured Data. Appl. Catal. B-Environ. 2016, 196, 100–107. DOI: 10.1016/j.apcatb.2016.05.014.
  • Lazić, V.; Smičiklas, I.; Marković, J.; Lončarević, D.; Dostanić, J.; Ahrenkiel, S. P.; Nedeljković, J. M. Antibacterial Ability of Supported Silver Nanoparticles by Functionalized Hydroxyapatite with 5-Aminosalicylic Acid. Vacuum 2018, 148, 62–68. DOI: 10.1016/j.vacuum.2017.10.039.
  • Cao, X.; Ma, L. Q.; Rhue, D. R.; Appel, C. S. Mechanisms of Lead, Copper, and Zinc Retention by Phosphate Rock. Environ. Pollut. 2004, 131, 435–444. DOI: 10.1016/j.envpol.2004.03.003.
  • Ivanets, A. I.; Srivastava, V.; Kitikova, N. V.; Shashkova, I. L.; Sillanpää, M. Non-Apatite Ca-Mg Phosphate Sorbent for Removal of Toxic Metal Ions from Aqueous Solutions. J. Environ. Chem. Eng. 2017, 5, 2010–2017. DOI: 10.1016/j.jece.2017.03.041.
  • Bunting, J. W.; Thong, K. E. Stability Constants for Some 1:1 Metal-Carboxylate Complexes. Can. J. Chem. 1970, 48, 1654–1656. DOI: 10.1139/v70-273.
  • Cerqueira, B.; Arenas-Lago, D.; Andrade, M. L.; Vega, F. A. Validation of TOF-SIMS and FE-SEM/EDS Techniques Combined with Sorption and Desorption Experiments to Check Competitive and Individual Pb2+ and Cd2+ Association with Components of B Soil Horizons. PLoS One 2015, 10, e0123977. DOI: 10.1371/journal.pone.0123977.
  • Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. DOI: 10.1021/ja02242a004.
  • Freundlich, H. M. F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–471.
  • Hokkanen, S.; Bhatnagar, A.; Srivastava, V.; Suorsa, V.; Sillanpää, M. Removal of Cd2+, Ni2+ and PO43- from Aqueous Solution by Hydroxyapatite-Bentonite Clay-Nanocellulose Composite. Int. J. Biol. Macromol. 2018, 118, 903–912. DOI: 10.1016/j.ijbiomac.2018.06.095.
  • Hokkanen, S.; Repo, E.; Westholm, L. J.; Lou, S.; Sainio, T.; Sillanpää, M. Adsorption of Ni2+, Cd2+, PO43− and NO3− from Aqueous Solutions by Nanostructured Microfibrillated Cellulose Modified with Carbonated Hydroxyapatite. Chem. Eng. J. 2014, 252, 64–74. DOI: 10.1016/j.cej.2014.04.101.
  • Soliman, E. M.; Marwani, H. M.; Albishri, H. M. Novel Solid-Phase Extractor Based on Functionalization of Multi-Walled Carbon Nano Tubes with 5-Aminosalicylic Acid for Preconcentration of Pb(II) in Water Samples Prior to Determination by ICP-OES. Environ. Monit. Assess. 2013, 185, 10269–10280. DOI: 10.1007/s10661-013-3331-z.
  • Moreno-Piraján, J. C.; Gómez-Cruz, R.; García-Cuello, V. S.; Giraldo, L. Binary System Cu(II)/Pb(II) Adsorption on Activated Carbon Obtained by Pyrolysis of Cow Bone Study. J. Anal. Appl. Pyrol. 2010, 89, 122–128. DOI: 10.1016/j.jaap.2010.06.007.
  • Ma, Q. Y.; Traina, S. J.; Logan, T. J.; Ryan, J. A. Effects of Aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb Immobilization by Hydroxyapatite. Environ. Sci. Technol. 1994, 28, 1219–1228. DOI: 10.1021/es00056a007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.