Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 11
197
Views
7
CrossRef citations to date
0
Altmetric
Articles

Utilization of activated carbon for maximizing the efficiency of zirconium oxide for photodegradation of 4-octylphenol

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1055-1065 | Received 02 Jan 2019, Accepted 07 Jun 2019, Published online: 18 Jun 2019

References

  • Jamil, T. S.; Mansor, E. S.; Nasr, R. A. Degradation of Lindane Using Two Nano Sized BiOXs and Their Heterojunction under Visible Light. Desalin. Water Treat. 2016, 57, 14750–14761. DOI:10.1080/19443994.2015.1063461.
  • Jamil, T. S.; Abbas, H. A.; Youssief, A. M.; Mansor, E. S.; Hammad, F. F. The Synthesis of Nano-Sized Undoped, Bi Doped and Bi, Cu co-Doped SrTiO3 Using Two Sol-Gel Methods to Enhance the Photocatalytic Performance for the Degradation of Dibutyl Phthalate under Visible Light. C. R. Chim. 2017, 20, 97–106. DOI:10.1016/j.crci.2016.05.022.
  • Xiao, X.; Hao, R.; Liang, M.; Zuo, X.; Nan, J.; Li, L.; Zhang, W. One-Pot Solvothermal Synthesis of Three-Dimensional (3D) BiOI/BiOCl Composites with Enhanced Visible-Light Photocatalytic Activities for the Degradation of bisphenol-A. Hazard. Mater. 2012, 233-234, 122–130. DOI:10.1016/j.jhazmat.2012.06.062.
  • Abbas, H. A.; Jamil, T. S.; Hammad, F. F. Synthesis, Characterization and Photocatalytic Activity of Nano Sized Undoped and Ga Doped SrTi0.7Fe0.3O3 for 2,4,6-Trichlorophenol Photodegradation. J. Environ. Chem. Eng. 2016, 4, 2384–2393. DOI:10.1016/j.jece.2016.04.019.
  • Wu, S.; Zhang, L.; Chen, J. Paracetamol in the Environment and Its Degradation by Microorganisms. Appl. Microbiol. Biotechnol. 2012, 96, 875–884. DOI:10.1007/s00253-012-4414-4.
  • Latorre, A.; Lacorte, S.; Barceló, D. Presence of Nonyl Phenol, Octyphenol and Bisphenol a in Two Aquifers Close to Agricultural, Industrial and Urban Areas. Chromatographia 2003, 57, 111–116. DOI:10.1007/BF02497486.
  • Van Miller, J. P.; Staples, C. A. Review of the Potential Environmental and Human Health-Related Hazards and Risks from Long-Term Exposure to p-Tert-Octylphenol. Hum. Ecol. Risk Assess 2005, 11, 319–351. DOI:10.1080/10807030590925812.
  • Environment Agency UK (EA), Environmental Risk Evaluation Report: 4-Tert-Octylphenol, Environmental Agency, Rio House, Waterside Drive, Aztec West, Almond- sbury, Bristol, BS32 4UD,” 2012.
  • APERC. APE Research Council, “Product Information,” 2012. http://www.aperc.org/productinfo.ht
  • Mayer, T.; Bennie, D.; Rosa, F.; Rekas, G.; Palabrica, V.; Schachtschneider, J. Occurrence of Alkylphenolic Substances in a Great Lakes Coastal Marsh, Cootes Paradise, on, Canada. Environ. Pollut. 2007, 147, 683–690. DOI:10.1016/j.envpol.2006.09.012.
  • Quednow, K.; Puttmann, W. Endocrine Disruptors in Fresh Water Streams of Hesse, Germany: Changes in Concentration Levels in the Time Span from 2003 to 2005. Environ. Pollut. 2008, 152, 476–483. DOI:10.1016/j.envpol.2007.05.032.
  • Liu, J.; Wang, R.; Huang, B.; Lin, C.; Wang, Y.; Pan, X. Distribution and Bioaccumulation of Steroidal and Phenolic Endocrine Disrupting Chemicals in Wild Fish Species from Dianchi Lake, China. Environ. Pollut. 2011, 159, 2815–2822. DOI:10.1016/j.envpol.2011.05.013.
  • Huang, Y. Q.; Wong, C. K. C.; Zheng, J. S.; Bouwman, H.; Barra, R.; Wahlström, B.; Neretin, L.; Wong, M. H. Bisphenol A (BPA) in China: A Review of Sources, Environmental Levels, and Potential Human Health Impacts. Environ. Int 2011, 30, 30–40.
  • Céspedes, R.; Lacorte, S.; Ginebreda, A.; Barceló, D. Occurrence and Fate of Alkylphenols and Alkylphenol Ethoxylates in Sewage Treatment Plants and Impact on Receiving Waters along the Ter River (Catalonia, NE Spain). Environ. Pollut. 2008, 153, 384–392. DOI:10.1016/j.envpol.2007.08.026.
  • Chen, B.; Duan, J.-C.; Mai, B.-X.; Luo, X.-J.; Yang, Q.-S.; Sheng, G.-Y.; Fu, J.-M. Distribution of Alkylphenols in the Pearl River Delta and Adjacent Northern South China Sea, China. Chemosphere 2006, 63, 652–661. DOI:10.1016/j.chemosphere.2005.08.004.
  • Fu, M.; Li, Z.; Gao, H. Distribution Characteristics of Nonylphenol in Jiaozhou Bay of Qingdao and Its Adjacent Rivers. Chemosphere 2007, 69, 1009–1016. DOI:10.1016/j.chemosphere.2007.04.061.
  • Duan, X-y.; Li, Y-x.; Li, X-g.; Zhang, D-h.; Gao, Y. Alkyphenols in Surface Sediments of the Yellow Sea and East China Sea Inner Shelf: Occurrence, Distribution and Fate. Chemosphere 2014, 107, 265–273. DOI:10.1016/j.chemosphere.2013.12.054.
  • Zhang, Y.-Z.; Tang, C.-Y.; Song, X.-F.; Li, F.-D. Behavior and Fate of Alkylphenols in Surface Water of the Jialu River, Henan Province, China. Chemosphere 2009, 77, 559–565. DOI:10.1016/j.chemosphere.2009.07.005.
  • Staniszewska, M.; Koniecko, I.; Falkowska, L.; Krzymyk, E. Occurrence and Distribution of Bisphenol a and Alkylphenols in the Water of the Gulf of Gdansk (Southern Baltic). Mar. Pollut. Bull. 2015, 91, 372–379. DOI:10.1016/j.marpolbul.2014.11.027.
  • Cheng, J-r.; Wang, K.; Yu, J.; Yu, Z-x.; Yu, X-b.; Zhang, Z-z. Distribution and Fate Modeling of 4-Nonylphenol, 4-t-Octylphenol, and Bisphenol a in the Yong River of China. Chemosphere 2018, 195, 594–605. DOI:10.1016/j.chemosphere.2017.12.085.
  • Xu, J.; Wang, P.; Guo, W.; Dong, J.; Wang, L.; Dai, S. Seasonal and Spatial Distribution of Nonylphenol in Lanzhou Reach of Yellow River in China. Chemosphere 2006, 65, 1445–1451. DOI:10.1016/j.chemosphere.2006.04.042.
  • Luo, Z.; Tu, Y.; Li, H.; Qiu, B.; Liu, Y.; Yang, Z. Endocrine-Disrupting Compounds in the Xiangjiang River of China: Spatio-Temporal Distribution, Source Apportionment, and Risk Assessment. Ecotoxicol. Environ. Saf. 2019, 167, 476–484.
  • Heinis, L. J.; Knuth, M. L.; Liber, K.; Sheedy, B. R.; Tunell, R. L.; Ankley, G. T. Persistence and Distribution of 4-Nonylphenol following Repeated Application to Littoral Enclosures. Environ. Toxicol. Chem. 1999, 18, 363–375. DOI:10.1002/etc.5620180302.
  • Liber, K.; Knuth, M. L.; Stay, F. S. An Integrated Evaluation of the Persistence and Effects of 4-Nonylphenol in an Experimental Littoral Ecosystem. Environ. Toxicol. Chem. 1999, 18, 357–362. DOI:10.1897/1551-5028(1999)018<0357:AIEOTP>2.3.CO;2.
  • Ahel, M.; Giger, W.; Koch, M. Behavior of Alkylphenol Polyethoxylate Surfactants in the Aquatic Environment: occurrence and Transportation in Sewage Treatment. Water Res. 1994, 28, 1131–1142. DOI:10.1016/0043-1354(94)90200-3.
  • Rajendran, R. K.; Lin, C.-C.; Huang, S.-L.; Kirschner, R. Enrichment, Isolation, and Biodegradation Potential of Long-Branched Chain Alkylphenol Degrading Non-Ligninolytic Fungi from Wastewater. Mar. Pollut. Bull. 2017, 125, 416–425.
  • Zhang, C.; Li, Y.; Wang, C.; Niu, L.; Cai, W. Occurrence of Endocrine Disrupting Compounds in Aqueous Environment and Their Bacterial Degradation: A Review. Crit. Rev. Environ. Sci. Technol. 2016, 46, 1–59. DOI:10.1080/10643389.2015.1061881.
  • Hariharan, C. Photocatalytic Degradation of Organic Contaminants in Waterby ZnO Nanoparticles: Revisited. Appl. Catal. A 2006, 304, 55–61. DOI:10.1016/j.apcata.2006.02.020.
  • Kasprzyk-Hordern, B.; Dinsdale, R. M.; Guwy, A. J. The Occurrence of Pharmaceuticals, Personal Care Products, Endocrine Disruptors and Illicit Drugs in Surface Water in South Wales, UK. Water Res. 2008, 42, 3498–3518. DOI:10.1016/j.watres.2008.04.026.
  • Rahman, M. F.; Yanful, E. K.; Jasim, S. Y.; Bragg, L. M.; Servos, M. R.; Ndiongue, S.; Borikar, D. Advanced Oxidation Treatment of Drinking Water: Part I. Occurrence and Removal of Pharmaceuticals and Endocrine-Disrupting Compounds from Lake Huron Water, in. Ozone Sci. Eng. 2010, 32, 217–229. DOI:10.1080/01919512.2010.489185.
  • Yin, M. C.; Li, Z. S.; Kou, J. H.; Zou, Z. G. Mechanism Investigation of Visible Light-Induced Degradation in a Heterogeneous TiO2/Eosin Y/Rhodamine B System. Environ. Sci. Technol. 2009, 43, 8361–8366. DOI:10.1021/es902011h.
  • Zhang, L.-S.; Wong, K.-H.; Yip, H.-Y.; Hu, C.; Yu, J. C.; Chan, C. Y.; Wong, P.-K. Effective Photocatalytic Disinfection of E. coli K-12 Using AgBr − Ag − Bi2WO6 Nanojunction System Irradiated by Visible Light: The Role of Diffusing Hydroxyl Radicals. Environ. Sci. Technol. 2010, 44, 1392–1398. DOI:10.1021/es903087w.
  • Meng, S. G.; Li, D. Z.; Sun, M.; Li, W. J.; Wang, J. X.; Chen, J.; Fu, X. Z.; Xiao, G. C. Sonochemical Synthesis, Characterization and Photocatalytic Properties of a Novel Cube-Shaped CaSn(OH)6. Catal. Commun. 2011, 12, 972–975. DOI:10.1016/j.catcom.2011.02.026.
  • Botta, S. G.; Navı́o, J. A.; Hidalgo, M. C.; Restrepo, G. M.;.; Litter, M. I. Photocatalytic Properties of ZrO2 and Fe/ZrO2 Semiconductors Prepared by a Sol–Gel Technique. J Photochem Photobiol A: Chem. 1999, 129, 89–99. DOI:10.1016/S1010-6030(99)00150-1.
  • Wu, C.; Zhao, X.; Ren, Y.; Yue, Y.; Hua, W.; Cao, Y.; Tang, Y.; Gao, Z. Gas-Phase Photo-Oxidations of Organic Compounds over Different Forms of Zirconia. J. Mol. Catal. A: Chem. 2005, 229, 233–239. DOI:10.1016/j.molcata.2004.11.029.
  • Neppolian, B.; Wang, Q.; Yamashita, H.; Choi, H. Synthesis and Characterization of ZrO2–TiO2 Binary Oxide Semiconductor Nanoparticles: application and Interparticle Electron Transfer Process. Appl. Catal. A: Gen. 2007, 333, 264–271. DOI:10.1016/j.apcata.2007.09.026.
  • Navío, J. A.; Colón, G.; Macías, M.; Sánchez-Soto, P. J.; Augugliaro, V.; Palmisano, L. ZrO2-SiO2 Mixed Oxides: surface Aspects, Photophysical Properties and Photoreactivity for 4-Nitrophenol Oxidation in Aqueous Phase. J. Mol. Catal. A: Chem. 1996, 109, 239–248. DOI:10.1016/1381-1169(96)00009-X.
  • Liqiang, J.; Yichun, Q.; Baiqi, W.; Shudan, L.; Baojiang, J.; Libin, Y.; Wei, F.; Honggang, F.; Jiazhong, S. Review of Photoluminescence Performance of Nano-Sized Semiconductor Materials and Its Relationships with Photocatalytic Activity. Sol. Energy Mater. Sol. Cells 2006, 90, 1773–1787. DOI:10.1016/j.solmat.2005.11.007.
  • Vinu, R.; Sneha, P.; Giridhar, M. Dye Sensitized Visible Light Degradation of Phenolic Compounds. J. Chem. Eng. 2010, 165, 784–797. DOI:10.1016/j.cej.2010.10.018.
  • Puma, G. L.; Bono, A.; Krishnaiah, D.; Collin, J. G. Preparation of Titanium Dioxide Photocatalyst Loaded onto Activated Carbon Support Using Chemical Vapor Deposition: A Review Paper. J. Hazard. Mater. 2008, 157, 209–219. DOI:10.1016/j.jhazmat.2008.01.040.
  • Inagaki, M.; Imai, T.; Yoshikawa, T.; Tryba, B. Photocatalytic Activity of Anatase Powders for Oxidation of Methylene Blue in Water and Diluted NO Gas. Appl. Catal. B 2004, 51, 247–254. DOI:10.1016/j.apcatb.2004.02.017.
  • Li, Y.; Ma, M.; Sun, S.; Wang, X.; Yan, W.; Ouyang, Y. Preparation and Photocatalytic Activity of TiO2-Carbon Surface Composites by Supercritical Pretreatment and Sol–Gel Process. Catal. Commun. 2008, 9, 1583–1587. DOI:10.1016/j.catcom.2008.01.006.
  • Girgis, B. S.; El-Kady, A. A.; Attia, A. A.; Fathy, N. A.; Abdel-Wahhab, M. A. Impact of Air Convection on H3PO4- Activated Biomass for Sequestration of Cu (II) and Cd (II) Ions. Carbon Lett. 2009, 10, 114–122. DOI:10.5714/CL.2009.10.2.114.
  • El-Kady, A. A.; Abdel Ghafar, H. H.; Ibrahim, M. B. M.; Abdel-Wahhab, M. A. Utilization of Activated Carbon Prepared from Agricultural Waste for the Removal of Organophosphorous Pesticide from Aqueous Media. Desalin. Water Treat. 2013, 51, 7276–7285. DOI:10.1080/19443994.2013.792137.
  • Carpio, E.; Zúñiga, P.; Ponce, S.; Solis, J.; Rodriguez, J.; Estrada, W. Photocatalytic Degradation of Phenol Using TiO2 Nanocrystals Supported on Activated Carbon. J. Mol. Catal. A: Chem. 2005, 228, 293–298. DOI:10.1016/j.molcata.2004.09.066.
  • Li, Y.; Zhang, S.; Yu, Q.; Yin, W. The Effects of Activated Carbon Supports on the Structure and Properties of TiO2 Nanoparticles Prepared by a Sol–Gel Method. Appl. Surf. Sci. 2007, 253, 9254–9258. DOI:10.1016/j.apsusc.2007.05.057.
  • Subramani, A. K.; Byrappa, K.; Ananda, S.; Lokanatha Rai, K. M.; Ranganathaiah, C.; Yoshimura, M. Photocatalytic Degradation of Indigo Carmine Dye Using TiO2 Impregnated Activated Carbon. Bull. Mater. Sci. 2007, 30, 37–41. DOI:10.1007/s12034-007-0007-8.
  • Xu, J.; Ao, Y.; Fu, D.; Yuan, C. Synthesis of Fluorinedoped Titania-Coated Activated Carbon under Low Temperature with High Photocatalytic Activity under Visible Light. J. Phys. Chem. Solids 2008, 69, 2366–2370. DOI:10.1016/j.jpcs.2008.03.017.
  • Matos, J.; Laine, J.; Herrmann, J. M.; Uzcategui, D.; Brito, J. L. Influence of Activated Carbon upon Titania on Aqueous Photocatalytic Consecutive Runs of Phenol Photomineralization. Appl. Catal. B 2007, 70, 461–469. DOI:10.1016/j.apcatb.2005.10.040.
  • Lim, T. T.; Yap, P. S.; Srinivasan, M.; Fane, A. G. TiO2/AC Composites for Synergistic Adsorption-Photocatalysis Processes: Present Challenges and Further Developments for Water Treatment and Reclamation. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1173–1230. DOI:10.1080/10643380903488664.
  • Tryba, B.; Morawski, A. W.; Inagaki, M. Application of TiO2-Mounted Activated Carbon to the Removal of Phenol from Water. Appl. Catal. B 2003, 41, 427–433. DOI:10.1016/S0926-3373(02)00173-X.
  • Sobana, N.; Krishnakumar, B.; Swaminathan, M. Synergism and Effect of Operational Parameters on Solar Photocatalytic Degradation of an Azo Dye (Direct Yellow 4) Using Activated Carbon-Loaded Zinc Oxide. Mater. Sci. Semicond. Proc. 2013, 16, 1046–1051. DOI:10.1016/j.mssp.2013.01.002.
  • El-Kady, A. A.; Carleer, R.; Yperman, J.; D’Haen, J.; Abdel-Ghafar, H. H. Kinetic and Adsorption Study of Pb (II) towards Different Treated Activated Carbons Derived from Olive Cake Wastes. Desalin. Water Treat. 2016, 57, 8561–8574. DOI:10.1080/19443994.2015.1020514.
  • Poulopoulos, S. G.; Nikolaki, M.; Karampetsos, D.; Philippopoulos, C. J. Photochemical Treatment of 2-Chlorophenol Aqueous Solutions Using Ultraviolet Radiation, Hydrogen Peroxide and photo-Fenton Reaction. J. Hazard. Mater. 2008, 153, 582–587. DOI:10.1016/j.jhazmat.2007.09.002.
  • Smith, J. V. X-Ray Powder Data File. In Smith, J.V., Ed.; American Society for Testing Materials: Pennsylvania, 1960.
  • Suresh, P.; Vijaya, J. J.; Kennedy, L. J. Photocatalytic Degradation of Textile-Dyeing Wastewater by Using a Microwave Combustion-Synthesized Zirconium Oxide Supported Activated Carbon. Mat. Sci. Semicon. Proc. 2014, 27, 482–493. DOI:10.1016/j.mssp.2014.06.050.
  • Jamil, T. S.; Mansor, E. S.; El-Liethy, M. A. Photocatalytic Inactivation of E. coli Using Nano-Size Bismuth Oxyiodide Photocatalysts under Visible Light. J. Environ. Chem. Eng. 2015, 3, 2463–2471. DOI:10.1016/j.jece.2015.09.017.
  • Tian, G. H.; Pan, K.; Fu, H. G.; Jing, L. Q.; Zhou, W. Enhanced Photocatalytic Activity of S-Doped TiO2-ZrO2 Nanoparticles under Visible-Light Irradiation. J. Hazard. Mater. 2009, 166, 939–944. DOI:10.1016/j.jhazmat.2008.11.090.
  • Lin, C.; Zhang, C.; Lin, J. Phase Transformation and Photoluminescence Properties of Nanocrystalline ZrO2 Powders Prepared via the Pechini-Type Sol − Gel Process. J. Phys. Chem. C 2007, 111, 3300–3307. DOI:10.1021/jp066615l.
  • Hou, Y. D.; Wang, X. C.; Wu, L.; Chen, X. F.; Ding, Z. X.; Wang, X. X.; Fu, X. Z. N-Doped SiO2/TiO2 Mesoporous Nanoparticles with Enhanced Photocatalytic Activity under Visible-Light Irradiation. Chemosphere 2008, 72, 414–421. DOI:10.1016/j.chemosphere.2008.02.035.
  • Badawy, M. I.; Ali, M. E. M.; Ghaly, M. Y.; El-Missiry, M. A. Mesoporous Simonkolleite–TiO2 Nanostructured Composite for Simultaneous Photocatalytic Hydrogen Production and Dye Decontamination. Process Safety Environ. Protect. 2015, 94, 11–17.
  • Chuang, C. S.; Wang, M.-K.; Ko, C.-H.; Ou, C.-C.; Wu, C.-H. Removal of Benzene and Toluene by Carbonized Bamboo Materials Modified with TiO2. Bioresour. Technol. 2008, 99, 954–958. DOI:10.1016/j.biortech.2007.03.003.
  • Xue, G.; Liu, H. H.; Chen, Q. Y.; Hills, C.; Tyrer, M.; Innocent, F. Synergy between Surface Adsorption and Photocatalysis during Degradation of Humic Acid on TiO2/Activated Carbon Composites. J. Hazard. Mater 2011, 186, 765–772. DOI:10.1016/j.jhazmat.2010.11.063.
  • Le, H. A.; Linh, L. T.; Chin, S.; Jurng, J. Photocatalytic Degradation of Methylene Blue by a Combination of TiO2-Anatase and Coconut Shell Activated Carbon. Powder Technol. 2012, 225, 167–175. DOI:10.1016/j.powtec.2012.04.004.
  • Abdel Moniem, S. M.; Ali, M. E. M.; Gad-Allah, T. A.; Khalil, A. S. G.; Ulbricht, M.; El-Shahat, M. F.; Ashmawy, A. M.; Ibrahim, H. S. Detoxification of Hexavalent Chromium in Wastewater Containing Organic Substances Using simonkolleite-TiO2 Photocatalyst. Process Safety Environ. Protect. 2015, 95, 247–254. DOI:10.1016/j.psep.2015.03.010.
  • Sudha, M.; M. Deactivation Of, R. Photocatalytically Active ZnO Nanoparticle by Surface Capping with Poly Vinyl Pyrrolidone, IOSR J. Appl. Chem. 2013, 3, 45–53.
  • Grzechulska, J.; Morawski, A. W. Photocatalytic Decomposition of Azo-Dye Acid Black 1 in Water over Modified Titanium Dioxide. Appl. Catal. B: Environ. 2002, 36, 45–51. DOI:10.1016/S0926-3373(01)00275-2.
  • Ollis, D. F. Contaminant Degradation in Water. Environ. Sci. Technol. 1985, 19, 480–484. DOI:10.1021/es00136a002.
  • Galindo, C.; Jacques, P.; Kalt, A. Total Mineralization of an Azo Dye (Acid Orange 7) by UV/1102 Oxidation. I Adv. Oxid. Technol. 1999, 4, 400–407.
  • Ali, M. E. M.; Alhathal, A. A.; Azeez, F. A.; Ghaly, M. Y. Photoassisted Mineralization of Remazole Red F3B over NiO/TiO2 and CdO/TiO2 Nanoparticles under Simulated Sunlight. Sep. Sci. and Technol. 2018, 53, 170–180. DOI:10.1080/01496395.2017.1379536.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.