Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 11
522
Views
9
CrossRef citations to date
0
Altmetric
Articles

Biological treatment of electronic industry wastewater containing TMAH, MEA and sulfate in an UASB reactor

, , , &
Pages 1109-1115 | Received 21 Dec 2018, Accepted 10 Jun 2019, Published online: 22 Jun 2019

References

  • Lee, Y.-C.; Whang, L.-M.; Ngo, M. H.; Chen, T.-H.; Cheng, H.-H. Acute Toxicity Assessment of TFT-LCD Wastewater Using Daphnia similis and Cyprinus carpio. Process Saf. Environ. Prot. 2016, 104, 499–506. DOI: 10.1016/j.psep.2016.03.003.
  • Wu, C.-L.; Su, S.-B.; Chen, J.-L.; Lin, H.-J.; Guo, H.-R. Mortality from Dermal Exposure to Tetramethylammonium Hydroxide. J. Occup. Health 2008, 50, 99–102. DOI: 10.1539/joh.X7001.
  • Wright, R.; Thomas, K. V.; Nygard, J. The Toxicity of Selected and Secondary Products to Aquatic Organisms: A Review; Report 5698; Norwegian Institute for Water Research: Oslo, 2008.
  • Hu, T. H.; Whang, L. M.; Lei, C. N.; Chen, C. F.; Chiang, T. Y.; Lin, L. B.; Chen, H. W.; Liu, P. W. G.; Cheng, S. S. Evaluation of Methanogenic Treatment of TMAH (Tetra-Methyl Ammonium Hydroxide) in a Full-Scale TFT-LCD Wastewater Treatment Process. Water. Sci. Technol. 2010, 62, 403–409. DOI: 10.2166/wst.2010.284.
  • Chen, T. K.; Ni, C. H.; Chen, J. N. Nitrification–Denitrification of Opto-Electronic Industrial Wastewater by Anoxic/Aerobic Process. J. Environ. Sci. Health, Part A 2003, 38, 2157–2167. DOI: 10.1081/ESE-120023346.
  • Liu, J. C. 6 - Aerobic Treatment of Effluents From the Electronics Industry. In Current Developments in Biotechnology and Bioengineering Biological Treatment of Industrial Effluents. Lee, D. J.; Jegatheesan, V.; Ngo, H. H.; Hallenbeck, P. C.; Pandey, A., Eds.; Elsevier: Amsterdam, 2017; pp. 140–150.
  • Lei, C.-N.; Whang, L.-M.; Chen, P.-C. Biological Treatment of Thin-Film Transistor Liquid Crystal Display (TFT-LCD) Wastewater Using Aerobic and Anoxic/Oxic Sequencing Batch Reactors. Chemosphere 2010, 81, 57–64. DOI: 10.1016/j.chemosphere.2010.07.001.
  • Chang, K.-F.; Yang, S.-Y.; You, H.-S.; Pan, J. R. Anaerobic Treatment of Tetra-Methyl-Ammonium Hydroxide (TMAH) Containing Wastewater. IEEE Trans. Semicond. Manuf. 2008, 21, 486–491.
  • Hu, T.-H.; Whang, L.-M.; Liu, P.-W. G.; Hung, Y. C.; Chen, H. W.; Lin, B.-L.; Chen, C.-F.; Chen, S. K.; Hsu, S.-H.; Shen, R.; et al. Biological Treatment of TMAH (Tetra-Methyl-Ammonium Hydroxide) in an Full-Scale TFT-LCD Wastewater Treatment Plant. Bioresour. Technol. 2012, 113, 303–310. DOI: 10.1016/j.biortech.2012.02.070.
  • Danshita, T.; Miyaoka, Y.; Matsuura, N.; Sumino, H.; Yamaguchi, T.; Syutsubo, K. Influence of Tetramethylammonium Hydroxide (TMAH) on the Microbial Properties of Anaerobic Granular Sludge Acclimated to Isoplophyl Alcohol (IPA) Wastewater under Psychrophilic Conditions. J. Environ. Sci. Health, Part A 2018, 53, 1015–1021. DOI: 10.1080/10934529.2018.1471034.
  • Hu, T. H.; Whang, L. M.; Huang, C.-Y. Methanogenic Degradation of Tetramethylammonium Hydroxide by Methanomethylovorans and Methanosarcina. J. Hazard. Mater. 2018, 357, 180–186. DOI: 10.1016/j.jhazmat.2018.05.059.
  • Kim, D.-J.; Lim, Y.; Cho, D.; Rhee, I. H. Biodegradaion of Monoethanolamine in Aerobic and Anoxic Conditions. Korean J. Chem. Eng. 2010, 27, 1521–1526. DOI: 10.1007/s11814-010-0285-5.
  • Liu, B.; Yoshinaga, K.; Wu, J.-H.; Chen, W.-Y.; Terashima, M.; Goel, R.; Pangallo, D.; Yasui, H. Kinetic Analysis of Biological Degradation for Tetramethylammonium Hydroxide (TMAH) in the Anaerobic Activated Sludge System at Ambient Temperature. Biochem. Eng. J. 2016, 114, 42–49. DOI: 10.1016/j.bej.2016.06.020.
  • Whang, L.-M.; Hu, T.-H.; Liu, P.-W. G.; Hung, Y.-C.; Fukushima, T.; Wu, Y.-J.; Chang, S.-H. Molecular Analysis of Methanogens Involved in Methanogenic Degradation of Tetramethylammonium Hydroxide in Full-Scale Bioreactors. Appl. Microbiol. Biotechnol. 2015, 99, 1485–1497. DOI: 10.1007/s00253-014-6058-z.
  • David, R. B.; Robert, A. M. Methanosarcinales ord. nov. In Bergy’s Manual of Systematic Bacteriology Second Edition Volume One. Boone, D.R.; Castenholz, R.W.; Garrity, G.M., Eds.; Springer: Berlin, 2001; pp. 268–293.
  • Kobayashi, T.; Yan, F.; Takahashi, S.; Li, Y.-Y. Effect of Starch Addition on the Biological Conversion and Microbial Community in a Methanol-Fed UASB Reactor during Long-Term Continuous Operation. Bioresour. Technol. 2011, 102, 7713–7719. DOI: 10.1016/j.biortech.2011.05.084.
  • Mrklas, O.; Chu, A.; Lunn, S.; Bentley, L. R. Biodegradation of Monoethanolamine, Ethylene Glycol and Triethylene Glycol in Laboratory Bioreactors. Water, Air, Soil Poll. 2004, 159, 249–263. DOI: 10.1023/B:WATE.0000049178.93865.d4.
  • Syutsubo, K.; Sinthurat, N.; Ohashi, A.; Harada, H. Population Dynamics of Anaerobic Microbial Consortia in Thermophilic Granular Sludge Response to Feed Composition. Water Sci. Technol. 2001, 43, 59–66. DOI: 10.2166/wst.2001.0015.
  • Yamaguchi, T.; Harada, H.; Tseng, I.-C. Competitive exclusion of methane-producing bacteria by sulfate-reducing bacteria in anaerobic degradation of long chain fatty acid. Proceeding of the 8th International Conference on Anaerobic Digestion, 1997, Vol. 2, pp. 362–370.
  • Sumino, H.; Murota, R.; Miyashita, A.; Imachi, H.; Ohashi, A.; Harada, H.; Syutsubo, K. Treatment of Low-Strength Wastewater in an Anaerobic down-Flow Hanging Sponge (AnDHS) Reactor at Low Temperature. J. Environ. Sci. Health, Part A 2012, 47, 1803–1808. DOI: 10.1080/10934529.2012.689241.
  • Japan Sewage Works Association. Japanese standard testing methods for sewage(in Japanese), Japan Sewage Works Association: Tokyo, Japan, 1997.
  • Yamaguchi, T.; Harada, H.; Hisano, T.; Yamazaki, S.; Tseng, I.-C. Process Behavior of UASB Reactor Treating a Wastewater Containing High Strength Sulfate. Water Res. 1999, 33, 3182–3190. DOI: 10.1016/S0043-1354(99)00029-9.
  • Chen, S. Y.; Lu, L.-A.; Lin, J.-G. Biodegradation of Tetramethylammonium Hydroxide (TMAH) in Completely Autotrophic Nitrogen Removal over Nitrite (CANON) Process. Bioresour. Technol. 2016, 210, 88–93. DOI: 10.1016/j.biortech.2016.01.127.
  • Li, Y.-Y. Qiao, W. Transactions and Impacts of Ammonia and Hydrogen Sulfide in Anaerobic Reactors. In Anaerobic Biotechnology Environmental Protection and Resource Recovery. Fang, H.H.P.; Zhang, T., Eds.; Imperial College Press: London, 2015; pp. 109–131.
  • Frankin, R. J. Full-Scale Experiences with Anaerobic Treatment of Industrial Wastewater. Water Sci. Technol. 2001, 44, 1–6. DOI: 10.2166/wst.2001.0451.
  • Weijma, J.; Chi, T.-M.; Hulshoff Pol, L. W.; Stams, A. J. M.; Lettinga, G. The Effect of Sulphate on Methanol Conversion in Mesophilic Upflow Anaerobic Sludge Bed Reactors. Process Biochem. 2003, 38, 1259–1266. DOI: 10.1016/S0032-9592(03)00002-5.
  • Greben, H. A.; Maree, J. P.; Mnqanqeni, S. Comparison between Sucrose, Ethanol and Methanol as Carbon and Energy Sources for Biological Sulphate Reduction. Water Sci. Technol. 2000, 41, 247–253. DOI: 10.2166/wst.2000.0279.
  • Whang, S.; Hovland, J.; Bakke, R. Modeling and Simulation of Lab-Scale Anaerobic co-Digestion of MEA Waste. Modeling. Mic. 2014, 35, 31–41. DOI: 10.4173/mic.2014.1.3.
  • Liamleam, W.; Annachhatre, A. P. Electron Donors for Biological Sulfate Reduction. Biotechnol. Adv. 2007, 25, 452–463. DOI: 10.1016/j.biotechadv.2007.05.002.
  • Lu, X.; Zhen, G.; Ni, J.; Hojo, T.; Kubota, K.; Li, Y.-Y. Effect of Influent COD/SO42- Ratios on Biodegradation Behaviors of Starch Wastewater in an Upflow Anaerobic Sludge Blanket (UASB) Reactor. Bioresour. Technol. 2016, 214, 175–183. DOI: 10.1016/j.biortech.2016.04.100.
  • Harada, H.; Uemura, S.; Momonoi, K. Interaction between Sulfate-Reducing Bacteria and Methane-Producing Bacteria in UASB Reactors Fed with Low Strength Wastes Containing Different Levels of Sulfate. Water Res. 1994, 28, 355–367. DOI: 10.1016/0043-1354(94)90273-9.
  • Stams, A. J. M.; Plugge, C. M.; de Bok, F. A. M.; van Houten, B. H. G. W.; Lens, P.; Dijkman, H.; Weijma, J. Metabolic Interactions in Methanogenic and Sulfate-Reducing Bioreactors. Water Sci. Technol. 2005, 52, 13–20. DOI: 10.2166/wst.2005.0493.
  • Jing, Z.; Hu, T.; Niu, Q.; Liu, Y.; Li, Y.-Y.; Wang, X. C. UASB Performance and Electron Competition between Methane-Producing Archaea and Sulfate-Reducing Bacteria in Treating Sulfate-Rich Wastewater Containing Ethanol and Acetate. Bioresour. Technol. 2013, 137, 349–357. DOI: 10.1016/j.biortech.2013.03.137.
  • Wu, J.; Niu, Q.; Li, L.; Hu, Y.; Mribet, C.; Hojo, T.; Li, Y.-Y. A Gradual Change between Methanogenesis and Sulfidogenesis during a Long-Term UASB Treatment of Sulfate-Rich Chemical Wastewater. Sci. Total Environ. 2018, 636, 168–176. DOI: 10.1016/j.scitotenv.2018.04.172.
  • Chen, Y.; Cheng, J. J.; Creamer, K. S. Inhibition of Anaerobic Digestion Process: A Review. Bioresour. Technol. 2008, 99, 4044–4064. DOI: 10.1016/j.biortech.2007.01.057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.