Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 13
536
Views
9
CrossRef citations to date
0
Altmetric
Articles

Modeling and analysis of adsorptive removal of arsenite by Mg–Fe–(CO3) layer double hydroxide with its application in real-life groundwater

, , & ORCID Icon
Pages 1318-1336 | Received 31 May 2019, Accepted 15 Jul 2019, Published online: 09 Aug 2019

References

  • Zhou, Q.; Xi, S. A Review on Arsenic Carcinogenesis: Epidemiology, Metabolism, Genotoxicity and Epigenetic Changes. Regul. Toxicol. Pharmacol. 2018, 99, 78–88. DOI: 10.1016/j.yrtph.2018.09.010.
  • Mendoza, R. M. O.; Kan, C. C.; Chuang, S. S.; Pingul-Ong, S. M. B.; Dalida, M. L. P.; Wan, M. W. Feasibility Studies on Arsenic Removal from Aqueous Solutions by Electrodialysis. J. Environ. Sci. Heal. – Part A Toxic/Hazardous Subst. Environ. Eng. 2014, 49, 545–554. DOI: 10.1080/10934529.2014.859035.
  • Ghosal, P. S.; Kattil, K. V.; Yadav, M. K.; Gupta, A. K. Adsorptive Removal of Arsenic by Novel Iron/Olivine Composite: Insights into Preparation and Adsorption Process by Response Surface Methodology and Artificial Neural Network. J. Environ. Manage. 2018, 209, 176–187. DOI: 10.1016/j.jenvman.2017.12.040.
  • Mazumder, D. G.; Dasgupta, U. B. Chronic Arsenic Toxicity: Studies in West Bengal, India. Kaohsiung J. Med. Sci. 2011, 27, 360–370. DOI: 10.1016/j.kjms.2011.05.003.
  • Ghosh, S.; Debsarkar, A.; Dutta, A. Technology Alternatives for Decontamination of Arsenic-Rich Groundwater – A Critical Review. Environ. Technol. Innov. 2019, 13, 277–303. DOI: 10.1016/j.eti.2018.12.003.
  • Tawabini, B. S.; Al-Khaldi, S. F.; Khaled, M. M.; Atieh, M. A. Removal of Arsenic from Water by Iron Oxide Nanoparticles Impregnated on Carbon Nanotubes. J. Environ. Sci. Heal. – Part A Toxic/Hazardous Subst. Environ. Eng. 2011, 46, 215–223. DOI: 10.1080/10934529.2011.535389.
  • Kundu, S.; Gupta, A. K. Sorption Kinetics of as(V) with Iron-Oxide-Coated Cement – A New Adsorbent and Its Application in the Removal of Arsenic from Real-Life Groundwater Samples. J. Environ. Sci. Heal. – Part A Toxic/Hazardous Subst. Environ. Eng. 2005, 40, 2227–2246. DOI: 10.1080/10934520500234767.
  • Brunsting, J. H.; McBean, E. A. Phosphate Interference during in Situ Treatment for Arsenic in Groundwater. J. Environ. Sci. Heal. – Part A Toxic/Hazardous Subst. Environ. Eng. 2014, 49, 671–678. DOI: 10.1080/10934529.2014.865449.
  • Nikić, J.; Agbaba, J.; Watson, M. A.; Tubić, A.; Šolić, M.; Maletić, S.; Dalmacija, B. Arsenic Adsorption on Fe–Mn Modified Granular Activated Carbon (GAC–FeMn): Batch and Fixed-Bed Column Studies. J. Environ. Sci. Heal. – Part A Toxic/Hazardous Subst. Environ. Eng. 2019, 54, 168–178. DOI: 10.1080/10934529.2018.1541375.
  • Wang, J.; Zhang, T.; Li, M.; Yang, Y.; Lu, P.; Ning, P.; Wang, Q. Arsenic Removal from Water/Wastewater Using Layered Double Hydroxide Derived Adsorbents, A Critical Review. RSC Adv. 2018, 8, 22694–22709. DOI: 10.1039/C8RA03647K.
  • Ha, H. N. N.; Phuong, N. T. K.; An, T. B.; Tho, N. T. M.; Thang, T. N.; Minh, B. Q.; Van Du, C. Arsenate Removal by Layered Double Hydroxides Embedded into Spherical Polymer Beads: Batch and Column Studies. J. Environ. Sci. Heal. – Part A Toxic/Hazardous Subst. Environ. Eng. 2016, 51, 403–413.
  • Siddiqui, S. I.; Chaudhry, S. A. Iron Oxide and Its Modified Forms as an Adsorbent for Arsenic Removal: A Comprehensive Recent Advancement. Process Saf. Environ. Prot. 2017, 111, 592–626.
  • Kundu, S.; Gupta, A. K. Adsorptive Removal of As(III) from Aqueous Solution Using Iron Oxide Coated Cement (IOCC): Evaluation of Kinetic, Equilibrium and Thermodynamic Models. Sep. Purif. Technol. 2006, 51, 165–172. DOI: 10.1016/j.seppur.2006.01.007.
  • Ghosal, P. S.; Gupta, A. K. Enhanced Efficiency of ANN Using Non-Linear Regression for Modeling Adsorptive Removal of Fluoride by Calcined Ca–Al–(NO3)–LDH. J. Mol. Liq. 2016, 222, 564–570. DOI: 10.1016/j.molliq.2016.07.070.
  • Yadav, M. K.; Gupta, A. K.; Ghosal, P. S.; Mukherjee, A. pH Mediated Facile Preparation of Hydrotalcite Based Adsorbent for Enhanced Arsenite and Arsenate Removal: Insights on Physicochemical Properties and Adsorption Mechanism. J. Mol. Liq. 2017, 240, 240–252. DOI: 10.1016/j.molliq.2017.05.082.
  • Matusik, J.; Rybka, K. Removal of Chromates and Sulphates by Mg/Fe LDH and Heterostructured LDH/Halloysite Materials: Efficiency, Selectivity, and Stability of Adsorbents in Single- and Multi-Element Systems. Materials 2019, 12, 1373. DOI: 10.3390/ma12091373.
  • Yoshida, M.; Koilraj, P.; Qiu, X.; Hirajima, T.; Sasaki, K. Sorption of Arsenate on MgAl and MgFe Layered Double Hydroxides Derived from Calcined Dolomite. J. Environ. Chem. Eng. 2015, 3, 1614–1621. DOI: 10.1016/j.jece.2015.05.016.
  • Zubair, M.; Daud, M.; Mckay, G.; Shehzad, F.; Al-Harthi, M. A. Recent Progress in Layered Double Hydroxides (LDH)-Containing Hybrids as Adsorbents for Water Remediation. Appl. Clay Sci. 2017, 143, 279–292. DOI: 10.1016/j.clay.2017.04.002.
  • Ghosal, P. S.; Gupta, A. K. Thermodynamics of Fluoride Adsorption on Aluminum/Olivine Composite (AOC): Influence of Temperature on Isotherm, Kinetics, and Adsorption Mechanism. Water, Air, Soil Pollut. 2018, 229, 344.
  • Ghosal, P. S.; Gupta, A. K. An Insight into Thermodynamics of Adsorptive Removal of Fluoride by Calcined Ca–Al–(NO3) Layered Double Hydroxide. RSC Adv. 2015, 5, 105889–105900. DOI: 10.1039/C5RA20538G.
  • Ghosal, P. S.; Gupta, A. K. Bi-Objective Optimization through Pareto Frontier Analysis and Artificial Neural Network for Adsorptive Removal of Fluoride by A Novel Al/Olivine Composite. J. Environ. Eng. 2018, 144, 04018126. DOI: 10.1061/(ASCE)EE.1943-7870.0001457.
  • Kundu, S.; Gupta, A. K. Arsenic Adsorption onto Iron Oxide-Coated Cement (IOCC): Regression Analysis of Equilibrium Data with Several Isotherm Models and Their Optimization. Chem. Eng. J. 2006, 122, 93–106. DOI: 10.1016/j.cej.2006.06.002.
  • Abbasi, B.; Mahlooji, H. Improving Response Surface Methodology by Using Artificial Neural Network and Simulated Annealing. Expert Syst. Appl. 2012, 39, 3461–3468. DOI: 10.1016/j.eswa.2011.09.036.
  • Uddameri, V. Using Statistical and Artificial Neural Network Models to Forecast Potentiometric Levels at a Deep Well in South Texas. Environ. Geol. 2007, 51, 885–895. DOI: 10.1007/s00254-006-0452-5.
  • Baig, S. A.; Sheng, T.; Sun, C.; Xue, X.; Tan, L.; Xu, X. Arsenic Removal from Aqueous Solutions Using Fe3O4-HBC Composite: Effect of Calcination on Adsorbents Performance. PLoS One 2014, 9, e100704. DOI: 10.1371/journal.pone.0100704.
  • Acharya, J.; Sahu, J. N.; Sahoo, B. K.; Mohanty, C. R.; Meikap, B. C. Removal of Chromium (VI) from Wastewater by Activated Carbon Developed from Tamarind Wood Activated with Zinc Chloride. Chem. Eng. J. 2009, 150, 25–39. DOI: 10.1016/j.cej.2008.11.035.
  • Raji, F.; Pakizeh, M. Applied Surface Science Study of Hg(II) Species Removal from Aqueous Solution Using Hybrid ZnCl2-MCM-41 Adsorbent. Appl. Surf. Sci. 2013, 282, 415–424. DOI: 10.1016/j.apsusc.2013.05.145.
  • Mondal, P.; Majumder, C. B.; Mohanty, B. Effects of Adsorbent Dose, Its Particle Size and Initial Arsenic Concentration on the Removal of Arsenic, Iron and Manganese from Simulated Ground Water by Fe3+ Impregnated Activated Carbon. J. Hazard. Mater. 2008, 150, 695–702. DOI: 10.1016/j.jhazmat.2007.05.040.
  • Chowdhury, S.; Saha, P. Sea Shell Powder as A New Adsorbent to Remove Basic Green 4 (Malachite Green) from Aqueous Solutions: Equilibrium, Kinetic and Thermodynamic Studies. Chem. Eng. J. 2010, 164, 168–177. DOI: 10.1016/j.cej.2010.08.050.
  • Hu, Q.; Liu, Y.; Gu, X.; Zhao, Y. Adsorption Behavior and Mechanism of Different Arsenic Species on Mesoporous MnFe2O4 Magnetic Nanoparticles. Chemosphere 2017, 181, 328–336. DOI: 10.1016/j.chemosphere.2017.04.049.
  • Caporale, A. G.; Pigna, M.; Azam, S. M. G. G.; Sommella, A.; Rao, M. A.; Violante, A. Effect of Competing Ligands on the Sorption/Desorption of Arsenite on/from Mg–Fe Layered Double Hydroxides (Mg–Fe–LDH). Chem. Eng. J. 2013, 225, 704–709. DOI: 10.1016/j.cej.2013.03.111.
  • Wei, Y.; Liu, H.; Liu, C.; Luo, S.; Liu, Y.; Yu, X.; Ma, J.; Yin, K.; Feng, H. Fast and Efficient Removal of As(III) from Water by CuFe2O4 with Peroxymonosulfate: Effects of Oxidation and Adsorption. Water Res. 2019, 150, 182–190. DOI: 10.1016/j.watres.2018.11.069.
  • Ryu, S.-R.; Jeon, E.-K.; Yang, J.-S.; Baek, K. Journal of the Taiwan Institute of Chemical Engineers Adsorption of As(III) and As(V) in Groundwater by Fe–Mn Binary Oxide-Impregnated Granular Activated Carbon (IMIGAC). J. Taiwan Inst. Chem. Eng. 2017, 72, 62–69. DOI: 10.1016/j.jtice.2017.01.004.
  • Lagergren, S. About the Theory of So-Called Adsorption of Soluble Substances. K. Sven. Vetenskap. 1898, 24, 1–39.
  • Ho, Y. S.; Mckay, G. Sorption of Dye from Aqueous Solution by Peat. Chem. Eng. J. 1998, 70, 115–124. DOI: 10.1016/S1385-8947(98)00076-X.
  • Largitte, L.; Pasquier, R. A Review of the Kinetics Adsorption Models and Their Application to the Adsorption of Lead by an Activated Carbon. Chem. Eng. Res. Des. 2016, 109, 495–504. DOI: 10.1016/j.cherd.2016.02.006.
  • Ho, Y. S.; Mckay, G. Application of Kinetic Models to the Sorption of Copper (II) on to Peat. Adsorpt. Sci. Technol. 2002, 20, 797–815. DOI: 10.1260/026361702321104282.
  • Sundaramurthy, S.; Srivastava, V. C.; Mishra, I. Adsorption of Hydroquinone in Aqueous Solution by Granulated Activated Carbon. J. Environ. Eng. 2011, 137, 1145–1157.
  • Weber, W. J.; Morris, J. C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89, 31–60.
  • Diagboya, P. N.; Olu-Owolabi, B. I.; Adebowale, K. O. Microscale Scavenging of Pentachlorophenol in Water Using Amine and Tripolyphosphate-Grafted SBA-15 Silica: Batch and Modeling Studies. J. Environ. Manage. 2014, 146, 42–49. DOI: 10.1016/j.jenvman.2014.04.038.
  • Aravindhan, R.; Rao, J. R.; Nair, B. U. Kinetic and Equilibrium Studies on Biosorption of Basic Blue Dye by Green Macro Algae Caulerpa Scalpelliformis. J. Environ. Sci. Heal. – Part A Toxic/Hazardous Subst. Environ. Eng. 2007, 42, 621–631. DOI: 10.1080/10934520701244383.
  • Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. DOI: 10.1021/ja02242a004.
  • Freundlich, H. M. F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–471.
  • Temkin, M.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta Physicochim. URSS 1940, 12, 217–222.
  • Dubinin, M. M.; Zaverina, E. D.; Radushkevich, L. V. Sorption and Structure of Active Carbons. I. Adsorption of Organic Vapors. Russ. J. Phys. Chem. A 1947, 21, 1351–1362.
  • Ghosal, P. S.; Gupta, A. K. Determination of Thermodynamic Parameters from Langmuir Isotherm Constant-Revisited. J. Mol. Liq. 2017, 225, 137–146. DOI: 10.1016/j.molliq.2016.11.058.
  • Das, S.; Dash, S. K.; Parida, K. M. Kinetics, Isotherm, and Thermodynamic Study for Ultrafast Adsorption of Azo Dye by an Efficient Sorbent: Ternary Mg/(Al + Fe) Layered Double Hydroxides. ACS Omega 2018, 3, 2532–2545. DOI: 10.1021/acsomega.7b01807.
  • Mahmoud, M. A. Kinetics and Thermodynamics of Aluminum Oxide Nanopowder as Adsorbent for Fe(III) from Aqueous Solution. Beni-Suefuniversity J. Basic Appl. Sci. 2015, 4, 142–149. DOI: 10.1016/j.bjbas.2015.05.008.
  • Shan, R.; Yan, L.; Yang, K.; Hao, Y.; Du, B. Adsorption of Cd(II) by Mg–Al–CO3- and Magnetic Fe3O4/Mg–Al–CO3-Layered Double Hydroxides: Kinetic, Isothermal, Thermodynamic and Mechanistic Studies. J. Hazard. Mater. 2015, 299, 42–49. DOI: 10.1016/j.jhazmat.2015.06.003.
  • Ghanei, M.; Rashidi, A.; Tayebi, H.; Yazdanshenas, M. E. Removal of Acid Blue 25 from Aqueous Media by Magnetic-SBA-15/CPAA Super Adsorbent: Adsorption Isotherm, Kinetic, and Thermodynamic Studies. J. Chem. Eng. Data 2018, 63, 3592–3605. DOI: 10.1021/acs.jced.8b00474.
  • Gupta, A. K.; Ghosal, P. S.; Srivastava, S. K. Modeling and Optimization of Defluoridation by Calcined Ca–Al–(NO3)–LDH Using Response Surface Methodology and Artificial Neural Network Combined with Experimental Design. J. Hazard. Toxic. Radioact. Waste 2017, 21, 04016024. DOI: 10.1061/(ASCE)HZ.2153-5515.0000343.
  • Souza, P. R.; Dotto, G. L.; Salau, N. P. G. Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Interference System (ANFIS) Modelling for Nickel Adsorption onto Agro-Wastes and Commercial Activated Carbon. J. Environ. Chem. Eng. 2018, 6, 7152–7160. DOI: 10.1016/j.jece.2018.11.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.