Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 1
284
Views
6
CrossRef citations to date
0
Altmetric
Articles

Evaluation of the impact of soil contamination with mercury and application of soil amendments on the yield and chemical composition of Avena sativa L.

ORCID Icon, , , &
Pages 82-96 | Received 01 Jul 2019, Accepted 04 Sep 2019, Published online: 24 Sep 2019

References

  • Boening, D. W. Ecological Effects, Transport, and Fate of Mercury: A General Review. Chemosphere 2000, 40, 1335–1351. DOI: 10.1016/S0045-6535(99)00283-0.
  • Horvat, M. Mercury as a Global Pollutant. Anal. Bioanal. Chem. 2002, 374, 981–982. DOI: 10.1007/s00216-002-1605-3.
  • Kindbom, K.; Munthe, J. Product-Related Emissions of Mercury to Air in the European Union. IVL Svedish Environmental Research Institute Report 2007, 1–22.
  • Boszke, L.; Kowalski, A.; Astel, A.; Barański, A.; Gworek, B.; Siepak, J. Mercury Mobility and Bioavailability in Soil from Contaminated Area. Environ. Geol. 2008, 55, 1075–1087. DOI: 10.1007/s00254-007-1056-4.
  • Grandjean, P.; Nielsen, J. B. Mercury. In Environmental Toxicants – Human Exposures and Their Health Effects; Lippmann M., Ed.; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2009; pp 811–822.
  • Pacyna, E. G.; Pacyna, J. M.; Sundseth, K.; Munthe, J.; Kindbom, K.; Wilson, S.; Steenhuisen, F.; Maxson, P. Global Emission of Mercury to the Atmosphere from Anthropogenic Sources in 2005 and Its Future Projection until 2020. Atmos. Environ. 2010, 44, 2487–2499. DOI: 10.1016/j.atmosenv.2009.06.009.
  • EPA Regulatory impact analysis for the final mercury and air toxics standards. EPA-452/R, Washington, DC, 2011; 1–510. http://www.epa.gov/ttn/ecas/regdata/RIAs/matsriafinal.pdf.
  • Patra, M.; Sharma, A. Mercury Toxicity in Plants. Bot. Rev. 2000, 66, 379–422. DOI: 10.1007/BF02868923.
  • Richard, S.; Arnoux, A.; Cerdan, P.; Reynouard, C.; Horeau, V. Hg Levels of Soils, Sediments and Fish in French Guiana, South America. Water. Air. Soil Pollut. 2000, 124, 221–244. DOI: 10.1023/A:1005251016314.
  • Moreno-Jiménez, E.; Penalosa, J. M.; Esteban, E.; Carpena Ruiz, R. O. Mercury Accumulation and Resistance to Mercury Stress in Rumex Induratus Marrubium Vulgare Grown in Perlite. J. Plant Nutr. Soil Sci. 2007, 170, 485–494. DOI: 10.1002/jpln.200625238.
  • Kim, P. R.; Han, Y. J.; Holsen, T. M.; Yi, S. M. Atmospheric Particulate Mercury: concentrations and Size Distributions. Atmos. Environ. 2012, 61, 94–102. DOI: 10.1016/j.atmosenv.2012.07.014.
  • Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R. B.; Friedli, H. R.; Leaner, J.; Mason, R.; Mukherjee, A. B.; Stracher, G. B.; Streets, D. G.; Telmer, K. Global Mercury Emissions to the Atmosphere from Anthropogenic and Natural Sources. Atmos. Chem. Phys. 2010, 10, 5951–5964. DOI: 10.5194/acp-10-5951-2010.
  • Galbreath, K. C.; Zygarlicke, C. J. Mercury Transformations in Coal Combustion Flue Gas. Fuel Process. Technol. 2000, 65, 289–310. DOI: 10.1016/S0378-3820(99)00102-2.
  • Galbreath, K. C.; Zygarlicke, C. J.; Olson, E. S.; Pavlish, J. H.; Toman, D. L. Evaluation of Mercury Transformation Mechanisms in a Laboratory-Scale Combustion System. Sci. Total Environ. 2000, 261, 149–155. DOI: 10.1016/S0048-9697(00)00637-9.
  • Gray, J. E.; Theodorakos, P. M.; Fey, D. L.; Krabbenhoft, D. P. Mercury Concentrations and Distribution in Soil, Water, Mine Waste Leachates, and Air in and around Mercury Mines in the Big Bend Region, Texas, USA. Environ. Geochem. Health 2015, 37, 35–48. DOI: 10.1007/s10653-014-9628-1.
  • Sari, M. M.; Inoue, T.; Matsumoto, Y.; Yokota, K.; Isrun, I. Assessing a Mercury Affected Area from Small-Scale Gold Mining in Poboya, Central Sulawesi, Indonesia. EER. 2016, 4, 223–230. DOI: 10.13189/eer.2016.040406.
  • Kostova, I. J.; Hower, J. C.; Mastalerz, M.; Vassilev, S. V. Mercury Capture by Selected Bulgarian Fly Ashes: influence of Coal Rank and Fly Ash Carbon Pore Structure on Capture Efficiency. Appl. Geochem. 2011, 26, 18–27. DOI: 10.1016/j.apgeochem.2010.10.009.
  • Jaworska, H.; Dąbrowska-Naskręt, H.; Różański, S. Total Content of Mercury in Arable Soils in the Vicinity of Lafarge-Cement Poland SA Plant (“Kujawy” Bielawy). Ecol. Chem. Eng. A 2009, 16, 1299–1304.
  • Zheng, Y.; Jensen, D.; Windelin, C.; Jensen, F. Review of Technologies for Mercury Removal from Flue Gas from Cement Production Processes. Prog. Energy Combust. Sci. 2012, 38, 599–629. DOI: 10.1016/j.pecs.2012.05.001.
  • Lei, C. L.; Duan, Y.; Zhuo, Y.; Yang, L.; Zhang, L.; Yang, X.; Yao, Q.; Jiang, Y.; Xu, X. Mercury Transformation across Particulate Control Devices in Six Power Plants of China: The co-Effect of Chlorine and Ash Composition. Fuel 2007, 86, 603–610. DOI: 10.1016/j.fuel.2006.07.030.
  • Zhang, L.; Wong, M. H. Environmental Mercury Contamination in China: sources and Impacts. Environ. Int. 2007, 33, 108–121. DOI: 10.1016/j.envint.2006.06.022.
  • Cheng, H.; Hu, Y. Mercury in Municipal Solid Waste in China and Its Control: A Review. Environ. Sci. Technol. 2012, 46, 593–605. DOI: 10.1021/es2026517.
  • Smolinska, B. Green Waste Compost as an Amendment during Induced Phytoextraction of Mercury-Contaminated Soil. Environ. Sci. Pollut. Res. 2015, 22, 3528–3537. DOI: 10.1007/s11356-014-3601-5.
  • Ding, Z. H.; Tang, Q. H.; Liu, C.; Wang, W. H.; Zhuang, M.; Lin, Y. M. Distribution and Ecological Effect of Mercury in Laogang Landfill, Shanghai, China. J. Environ. Sci. 2007, 19, 200–204. DOI: 10.1016/S1001-0742(07)60032-1.
  • Cao, Y.; Zhou, H.; Fan, J.; Zhao, H.; Zhou, T.; Hack, P.; Chan, C. C.; Liou, J. C.; Pan, W. P. Mercury Emissions during Cofiring of Sub-Bituminous Coal and Biomass (Chicken Waste, Wood, Coffee Residue, and Tobacco Stalk) in a Laboratory Scale Fluidized Bed Combustor. Environ. Sci. Technol. 2008, 42, 9378–9384. DOI: 10.1021/es8016107.
  • Mukherjee, A. B.; Zevenhoven, R.; Bhattacharya, P.; Sajwan, K. S.; Kikuchi, R. Mercury Flow via Coal and Coal Utilization Byproducts: A Global Perspective. Resour. Conserv. Recy. 2008, 52, 571–591. DOI: 10.1016/j.resconrec.2007.09.002.
  • Pyta, H.; Rogula-Kozłowska, W. Size Distribution of Particulate Mercury by the Roads and in the Urban Background Conditions – Preliminary Study. Sci. Rev. Eng. Environ. Sci. 2014, 63, 14–25.
  • Tucaliuc, O. M.; Cretescu, I.; Nemtoi, G.; Breaban, I. G.; Soreanu, G.; Iancu, O. I. Monitoring of Mercury from Air and Urban Dust in the Industrial Area of Iasi Municipality. Environ. Eng. Manag. J. 2014, 13, 20151–22061. DOI: 10.30638/eemj.2014.228.
  • Gworek, B.; Dmuchowski, W.; Gozdowski, D.; Koda, E.; Osiecka, R.; Borzyszkowski, J. Influence of a Municipal Waste Landfill on the Spatial Distribution of Mercury in the Environment. PLoS One 2015, 10, e0133130–12. DOI: 10.1371/journal.pone.0133130.
  • Meij, R.; Vredenbregt, L. H. J.; Te Winkel, H. The Fate and Behavior of Mercury in Coal-fired Power Plants . J. Air Waste Manag. Assoc. 2002, 52, 912–917. DOI: 10.1080/10473289.2002.10470833.
  • Hławiczka, S.; Kubica, K.; Zielonka, U. Partitioning Factor of Mercury during Coal Combustion in Low Capacity Domestic Heating Units. Sci. Total Environ. 2003, 312, 261–265. DOI: 10.1016/S0048-9697(03)00252-3.
  • Pavlish, J. H.; Sondreal, E. A.; Mann, M. D.; Olson, E. S.; Galbreath, K. C.; Laudal, D. L.; Benson, S. A. Status Review of Mercury Control Options for Coal-Fired Power Plants. Fuel Process. Technol. 2003, 82, 89–165. DOI: 10.1016/S0378-3820(03)00059-6.
  • Lee, S.; Seo, Y.; Jang, H.; Park, K.; Baek, J.; An, H.; Song, K. Speciation and Mass Distribution of Mercury in a Bituminous Coal-Fired Power Plant. Atmos. Environ. 2006, 40, 2215–2224. DOI: 10.1016/j.atmosenv.2005.12.013.
  • Gale, T.; Lani, B.; Offen, G. Mechanism Governing the Fate of Mercury in Coal-Fired Power Systems. Fuel Process. Technol. 2008, 89, 139–151. DOI: 10.1016/j.fuproc.2007.08.004.
  • Nguyen, Y. V.; Pessione, G. F. A Three-Year Assessment of Mercury Mass Balance from Lambton™s Coal Fired Boilers Equipped with FGD and SC. Paper Presented at the EPA-DOE-EPRI-A&WMA Power Plant Air Pollutant Control “Mega” Symposium 2006, Aug 28–31, 2008, Baltimore, Maryland, USA, vol. 1 pp 361–375.
  • Wang, S. X.; Zhang, L.; Li, G. H.; Wu, Y.; Hao, J. M.; Pirrone, N.; Sprovieri, F.; Ancora, M. P. Mercury Emission and Speciation of Coal-Fired Power Plants in China. Atmos. Chem. Phys. 2010, 10, 1183–1192. DOI: 10.5194/acp-10-1183-2010.
  • Burmistrz, P.; Kogut, K. Mercury in Bituminous Coal Used in Polish Power Plants. Arch. Min. Sci. 2016, 61, 473–488.
  • NCEM National Centre for Emissions Management Institute of Environmental Protection – National Research Institute, The National Centre for Emissions Management, 2015, p 76.
  • Moreno-Jiménez, E.; Gamarra, R.; Carpena-Ruiz, R. O.; Millán, R.; Peñalosa, J. M.; Esteban, E. Mercury Bioaccumulation and Phytotoxicity in Two Wild Plant Species of Almadén Area. Chemosphere 2006, 63, 1969–1973. DOI: 10.1016/j.chemosphere.2005.09.043.
  • Chen, J.; Yang, Z. M. Mercury Toxicity, Molecular Response and Tolerance in Higher Plants. Biometals 2012, 25, 847–857. DOI: 10.1007/s10534-012-9560-8.
  • Obrist, D. Atmospheric Mercury Pollution Due to Losses of Terrestrial Carbon Pools? Biogeochemistry 2007, 85, 119–123. DOI: 10.1007/s10533-007-9108-0.
  • Dago, A.; González, I.; Ariño, C.; Martínez-Coronado, A.; Higueras, P.; Díaz-Cruz, J. M.; Esteban, M. Evaluation of Mercury Stress in Plants from the Almadén Mining District by Analysis of Phytochelatins and Their Hg Complexes. Environ. Sci. Technol. 2014, 48, 6256–6263. DOI: 10.1021/es405619y.
  • Sarbak, Z. Application of Sorbents in the Process of Soil Remediation. Chemia, Dydaktyka, Ekologia, Metrologia 2010, 15, 77–92.
  • Rolka, E.; Grzybowski, Ł.; Ciećko, Z.; Szostek, R.; Rachuba, A. Response of yellow lupine to soil contamination with mercury. In Mercury in the Environment – Identifying Threats for Human Health; Falkowska, L. Ed. University of Gdańsk Publisher: Gdansk, 2013; pp 119–128.
  • Heeraman, D. A.; Claassen, V. P.; Zasoski, R. J. Interaction of Lime, Organic Matter and Fertilizer on Growth and Uptake of Arsenic and Mercury by Zorro Fescue (Vulpia myuros L.). Plant Soil 2001, 234, 215–231.
  • Ciećko, Z.; Rolka, E.; Opęchowska, M.; Grzybowski, Ł. Response of Maize to Soil Contamination with Mercury. Ocean Hydrobiol. Stud. 2007, 36, 117–126.
  • Andrzejewska, A.; Diatta, J.; Spiżewski, T.; Krzesiński, W.; Smurzyńska, A. Application of Zeolite and Bentonite for Stabilizing Lead in a Contaminated Soil. Inż Ekolog. 2017, 18, 1–6. DOI: 10.12912/23920629/74950.
  • Stentiford, M. J. Polished Performers - Minerals in Frits and Glazes. Ind. Minerals 2004, 438, 54–61.
  • Tiessen, H.; Moir, J. O. Total and organic carbon. In Soil Sampling and Methods of Analysis Carter, M.R. Ed. Canadian Society of Soil Science. Lewis Publishers: Boca Raton, 1993; pp 187–199.
  • Machul, M. Use of the SPAD Test to Determine a Supplementary Nitrogen Rate for Maize. Pamiętnik Puławski 2005, 140, 159–172.
  • Nurzhanova, A.; Pidlisnyuk, V.; Abit, K.; Nurzhanov, C.; Kenessov, B.; Stefanovska, T.; Erickson, L. Comparative Assessment of Using Miscanthus × Giganteus for Remediation of Soils Contaminated by Heavy Metals: A Case of Military and Mining Sites. Environ. Sci. Pollut. Res. 2019, 26, 13320–13333. DOI: 10.1007/s11356-019-04707-z.
  • Manikandan, R.; Sahi, S. V.; Venkatachalam, P. Impact Assessment of Mercury Accumulation and Biochemical and Molecular Response of Mentha arvensis: A Potential Hyperaccumulator Plant. Sci. World J. 2015, 2015, 1–10. DOI: 10.1155/2015/715217.
  • Zhou, Z. S.; Huang, S. Q.; Guo, K.; Mehta, S. K.; Zhang, P. C.; Yang, Z. M. Metabolic Adaptations to Mercury-Induced Oxidative Stress in Roots of Medicago sativa L. J. Inorg. Biochem. 2007, 101, 1–9. DOI: 10.1016/j.jinorgbio.2006.05.011.
  • Radecka, I.; Wesołowski, M. Concentration and Distribution of Mercury in Rhizomes and Roots of Medicinal Plants [l:] III; IOŚ: Warsaw: 2005; pp 337–341.
  • Azevedo, R.; Rodriguez, E. Phytotoxicity of Mercury in Plants. J. Bot. 2012, 2012, 1–6. DOI: 10.1155/2012/848614.
  • Spiak, Z.; Romanowska, M.; Radoła, J. The Content in Soils Toxic to Different Species of Cultivated Plants. Zesz. Probl. Post. Nauk Rol. 2000, 471, 1125–1134.
  • Ansari, M. K. A.; Ahmad, A.; Umar, S.; Iqbal, M. Mercury-Induced Changes in Growth Variables and Antioxidative Enzyme Activities in Indian Mustard. J. Plant Interact 2009, 4, 131–136. DOI: 10.1080/17429140802716713.
  • Rellán-Álvarez, R.; Ortega-Villasante, C.; Álvarez-Fernández, A.; Del Campo, F. F.; Hernández, L. E. Stress Responses of Zea Mays to Cadmium and Mercury. Plant Soil 2006, 279, 41–50. DOI: 10.1007/s11104-005-3900-1.
  • Mathe‐Gaspar, G.; Szili‐Kovacs, T.; Takacs, T.; Mathe, P.; Anton, A. Environmental Impact of Soil Pollution with Toxic Elements from the Lead and Zinc Mine at Gyöngyösoroszi (Hungary). Commun. Soil Sci. Plant Anal. 2009, 40, 1–6.
  • Popa, K.; Murariu, M.; Molnar, R.; Schlosser, G.; Cecal, A.; Drochiiu, G. Effect of Radioactive and Non-Radioactive Mercury on Wheat Germination and the anti-Toxic Role of Glutathione. Isotopes Environ. Health Stud. 2007, 43, 105–116. DOI: 10.1080/10256010701362112.
  • Ciećko, Z.; Rolka, E.; Najmowicz, T.; Archacka, A.; Grzybowski, Ł. Response of Potato to Soil Contamination with Mercury Neutralised with Soil Improving Substances. Ecol. Chem. Eng. A 2009, 16, 523–530.
  • Xu, J.; Kleja, D. B.; Biester, H.; Lagerkvist, A.; Kumpiene, J. Influence of Particle Size Distribution, Organic Carbon, pH and Chlorides on Washing of Mercury Contaminated Soil. Chemosphere 2014, 109, 99–105. DOI: 10.1016/j.chemosphere.2014.02.058.
  • Yang, Y. K.; Zhang, C.; Shi, X. J.; Lin, T.; Wang, D. Y. Effect of Organic Matter and pH on Mercury Release from Soils. J. Environ. Sci. (China) 2007, 19, 1349–1354. DOI: 10.1016/s1001-0742(07)60220-4.
  • Dushenkov, V.; Kumar Nanda, P. B. A.; Motto, H.; Raskin, I. Rhizofiltration: The Use of Plants to Remove Heavy Metals from Aqueous Streams. Environ. Sci. Technol. 1995, 29, 1239–1245.
  • Ericksen, J. A.; Gustin, M. S.; Schorran, D. E.; Johnson, D. W.; Lindberg, S. E.; Coleman, J. S. Accumulation of Atmospheric Mercury in Forest Foliage. Atmos. Environ. 2003, 37, 1613–1622. DOI: 10.1016/S1352-2310(03)00008-6.
  • Suszcynsky, E. M.; Shann, J. R. Phytotoxicity and Accumulation of Mercury in Tobacco Subjected to Different Exposure Routes. Environ. Toxicol. Chem. 1995, 14, 61–67.
  • Moreno, F. N.; Anderson, C. W. N.; Stewart, R. B.; Robinson, B. H.; Ghomshei, M.; Meech, J. A. Induced Plant Uptake and Transport of Mercury in the Presence of Sulphur-Containing Ligands and Humic Acid. New Phytol. 2005, 166, 445–454. DOI: 10.1111/j.1469-8137.2005.01361.x.
  • Su, Y.; Han, F. X.; Chen, J.; Sridhar, B. B. M.; Monts, D. L. Phytoextraction and Accumulation of Mercury in Three Plant Species: Indian Mustard (Brassica Juncea), Beard Grass (Polypogon monospeliensis), and Chinese Brake Fern (Pteris vittata). Int. J. Phytoremediat. 2008, 10, 547–560. DOI: 10.1080/15226510802115091.
  • Nagajyoti, P. C.; Lee, K. D.; Sreekanth, T. V. M. Heavy Metals, Occurrence and Toxicity for Plants: A Review. Environ. Chem. Lett. 2010, 8, 199–216. DOI: 10.1007/s10311-010-0297-8.
  • Szabó, L.; Fodor, L. Uptake of Microelements by Crops Grown on Heavy Metal – Amended Soil. Commun. Soil Sci. Plant Anal. 2006, 37, 2679–2689. DOI: 10.1080/00103620600830070.
  • Rodriguez, L.; Rincón, J.; Asencio, I.; Rodriguez-Castellanos, L. Capability of Selected Crop Plants for Shoot Mercury Accumulation from Polluted Soils: phytoremediation Perspectives. Int. J. Phytoremediat. 2007, 9, 1–13. DOI: 10.1080/15226510601139359.
  • Bednarek, W.; Tkaczyk, P.; Dresler, S. Heavy Metals Contents as a Criterion for Assessment of Winter Wheat Grain Quality. Acta Agrophys. 2008, 12, 315–326.
  • Sahu, G. K.; Upadhyay, S.; Sahoo, B. B. Mercury Induced Phytotoxicity and Oxidative Stress in Wheat (Triticum aestivum L.) Plants. Physiol. Mol. Biol. Plants 2012, 18, 21–31. DOI: 10.1007/s12298-011-0090-6.
  • Patra, M.; Bhowmik, N.; Bandopadhyay, B.; Sharma, A. Comparison of Mercury, Lead and Arsenic with respect to Genotoxic Effects on Plant Systems and the Development of Genetic Tolerance. Environ. Exp. Bot. 2004, 52, 199–223. DOI: 10.1016/j.envexpbot.2004.02.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.