Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 2
243
Views
9
CrossRef citations to date
0
Altmetric
Articles

Removing of carmoisine dye pollutant from contaminated waters by photocatalytic method using a thin film fixed bed reactor

& ORCID Icon
Pages 193-208 | Received 04 Jul 2019, Accepted 09 Sep 2019, Published online: 09 Oct 2019

References

  • Pasikhani, J. V.; Gilani, N.; Pirbazari, A. E. The Correlation between Structural Properties, Geometrical Features, and Photoactivity of Freestanding TiO2 Nanotubes in Comparative Degradation of 2, 4-Dichlorophenol and Methylene Blue. Mater. Res. Express. 2018, 5, 025016. DOI: 10.1088/2053-1591/aaaa34.
  • Amin, K.; Hameid, H. A.; II.; Elsttar, A. A. Effect of Food Azo Dyes Tartrazine and Carmoisine on Biochemical Parameters Related to Renal, Hepatic Function and Oxidative Stress Biomarkers in Young Male Rats. Food Chem. Toxicol. 2010, 48, 2994–2999. DOI: 10.1016/j.fct.2010.07.039.
  • Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M. Photocatalytic Degradation Pathway of Methylene Blue in Water. Appl. Catal. B: Environ. 2001, 31, 145–157. DOI: 10.1016/S0926-3373(00)00276-9.
  • Bhowmik, M.; Deb, K.; Debnath, A.; Saha, B. Mixed Phase Fe2O3/Mn3O4 Magnetic Nanocomposite for Enhanced Adsorption of Methyl Orange Dye: Neural Network Modeling and Response Surface Methodology Optimization. Appl. Organometal. Chem. 2018, 32, e4186. DOI: 10.1002/aoc.4186.
  • Modi, A.; Bellare, J. Efficient Removal of Dyes from Water by High Flux and Superior Antifouling Polyethersulfone Hollow Fiber Membranes Modified with ZnO/cGO Nanohybrid. J. Water Process Eng. 2019, 29, 100783. DOI: 10.1016/j.jwpe.2019.100783.
  • Yahiaoui, I.; Aissani-Benissad, F.; Fourcade, F.; Amrane, A. Enhancement of the Biodegradability of a Mixture of Dyes (Methylene Blue and Basic Yellow 28) Using the Electrochemical Process on a Glassy Carbon Electrode. Desalin. Water Treat. 2016, 57, 12316–12323. DOI: 10.1080/19443994.2015.1046944.
  • Akbari, A.; Sheshdeh, F. J.; Jabbari, V. Novel Nanofiberous Membrane Fabricated via Electrospinning of Wastage Fuzzes of Mechanized Carpet Used for Dye Removal of the Carpet Dyeing Wastewater. J. Environ. Sci. Health A. 2012, 47, 847–853. DOI: 10.1080/10934529.2012.664999.
  • Badawy, M. I.; Ghaly, M. Y.; Gad-Allah, T. A. Advanced Oxidation Processes for the Removal of Organophosphorus Pesticides from Wastewater. Desalination 2006, 194, 166–175. DOI: 10.1016/j.desal.2005.09.027.
  • Galindo, C.; Jacques, P.; Kalt, A. Photodegradation of the Aminoazobenzene Acid Orange 52 by Three Advanced Oxidation Processes: UV/H2O2, UV/TiO2 and VIS/TiO2: comparative Mechanistic and Kinetic Investigations. J. Photochem. Photobiol. A Chem. 2000, 130, 35–47. DOI: 10.1016/S1010-6030(99)00199-9.
  • Oancea, P.; Meltzer, V. Kinetics of Tartrazine Photodegradation by UV/H2O2 in Aqueous Solution. Chem. Papers. 2014, 68, 105–111. DOI: 10.2478/s11696-013-0426-5.
  • Konstantinou, I. K.; Albanis, T. A. TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: kinetic and Mechanistic Investigations: A Review. Appl. Catal. B: Environ. 2004, 49, 1–14. DOI: 10.1016/j.apcatb.2003.11.010.
  • Gaya, U. I.; Abdullah, A. H. Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide: A Review of Fundamentals, Progress and Problems. J. Photochem. Photobiol. C: Photochem. Rev. 2008, 9, 1–12. DOI: 10.1016/j.jphotochemrev.2007.12.003.
  • Akpan, U. G.; Hameed, B. H. Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2-Based Photocatalysts: A Review. J. Hazard. Mater. 2009, 170, 520–529. DOI: 10.1016/j.jhazmat.2009.05.039.
  • Tuormaa, T. E. The Adverse Effects of Food Additives on Health: A Review of the Literature with a Special Emphasis on Childhood Hyperactivity. J. Orthomol. Med. 1994, 9, 225–225.
  • Gupta, V. Application of Low-Cost Adsorbents for Dye Removal–A Review. J. Environ. Manage. 2009, 90, 2313–2342.
  • Saggioro, E. M.; Oliveira, A. S.; Pavesi, T.; Maia, C. G.; Ferreira, L. F. V.; Moreira, J. C. Use of Titanium Dioxide Photocatalysis on the Remediation of Model Textile Wastewaters Containing Azo Dyes. Molecules 2011, 16, 10370–10386. DOI: 10.3390/molecules161210370.
  • Sardar, D.; Maity, J.; Ghosalya, M. K.; Gopinath, C. S.; Bala, T. Facile Synthesis of ZnO–Ag Nanocomposite and Its Photocatalytic Activity. Mater. Res. Express. 2017, 4, 055011. DOI: 10.1088/2053-1591/aa6df1.
  • Sheng, F.; Zhu, X.; Wang, W.; Wang, P.; Zhang, R. Preparation and Characterization of K6ZrW11O39Sn‐TiO2 Composite Catalyst for Solar Photocatalytic Degradation of Aqueous Dye Solutions. J. Chin. Chem. Soc. 2017, 64, 1111–1119. DOI: 10.1002/jccs.201700124.
  • Zheng, P.; Du, Y.; Liu, D.; Ma, X. Synthesis, Adsorption and Photocatalytic Property of halloysite-TiO2-Fe3O4 Composites. Desalin. Water Treat. 2016, 57, 22703–22710. DOI: 10.1080/19443994.2015.1137498.
  • Wu, L.; Yan, H.; Li, X.; Wang, X. Influence of TiCl4 Concentration on the Photocatalytic Performance of nano-TiO2 Synthesized by Gaseous Detonation. Mater. Res. Express. 2016, 3, 085012. DOI: 10.1088/2053-1591/3/8/085012.
  • Razali, M. H.; Ismail, N. A.; Zulkafli, M. F. A. M.; Amin, K. A. M. 3D Nanostructured Materials: TiO2 Nanoparticles Incorporated Gellan Gum Scaffold for Photocatalyst and Biomedical Applications. Mater. Res. Express. 2018, 5, 035039. DOI: 10.1088/2053-1591/aab5f5.
  • Hickman, R.; Walker, E.; Chowdhury, S. TiO2-PDMS Composite Sponge for Adsorption and Solar Mediated Photodegradation of Dye Pollutants. J. Water Process Eng. 2018, 24, 74–82. DOI: 10.1016/j.jwpe.2018.05.015.
  • Saleem, A.; Imran, M.; Shahzadi, A.; Junaid, M.; Majeed, H.; Rafiq, A.; Shahzadi, I.; Ikram, M.; Naz, M.; Ali, S. Drastic Improvement in Catalytic, Optical and visible-Light Photocatalytic Behavior of Cobalt and Nickel Doped TiO2 Nanopowder. Mater. Res. Express. 2018, 6, 015003. DOI: 10.1088/2053-1591/aae28e.
  • Natarajan, S.; Bajaj, H. C.; Tayade, R. J. Recent Advances Based on the Synergetic Effect of Adsorption for Removal of Dyes from Waste Water Using Photocatalytic Process. J. Environ. Sci. 2018, 65, 201–222. DOI: 10.1016/j.jes.2017.03.011.
  • Sharma, J.; Mishra, I.; Dionysiou, D. D.; Kumar, V. Oxidative Removal of Bisphenol a by UV-C/Peroxymonosulfate (PMS): Kinetics, Influence of co-Existing Chemicals and Degradation Pathway. Chem. Eng. J. 2015, 276, 193–204. DOI: 10.1016/j.cej.2015.04.021.
  • Rachel, A.; Subrahmanyam, M.; Boule, P. Comparison of Photocatalytic Efficiencies of TiO2 in Suspended and Immobilised Form for the Photocatalytic Degradation of Nitrobenzenesulfonic Acids. Appl. Catal. B: Environ. 2002, 37, 301–308. DOI: 10.1016/S0926-3373(02)00007-3.
  • Noorjahan, M.; Reddy, M. P.; Kumari, V. D.; Lavedrine, B.; Boule, P.; Subrahmanyam, M. Photocatalytic Degradation of H-Acid over a Novel TiO2 Thin Film Fixed Bed Reactor and in Aqueous Suspensions. J. Photochem. Photobiol. A Chem. 2003, 156, 179–187. DOI: 10.1016/S1010-6030(02)00408-2.
  • Rachel, A.; Lavedrine, B.; Subrahmanyam, M.; Boule, P. Use of Porous Lavas as Supports of Photocatalysts. Catal. Commun. 2002, 3, 165–171. DOI: 10.1016/S1566-7367(02)00076-6.
  • Pozzo, R. L.; Baltanas, M. A.; Cassano, A. E. Supported Titanium Oxide as Photocatalyst in Water Decontamination: state of the Art. Catal. Today. 1997, 39, 219–231. DOI: 10.1016/S0920-5861(97)00103-X.
  • Herrmann, J.-M.; Tahiri, H.; Ait-Ichou, Y.; Lassaletta, G.; Gonzalez-Elipe, A.; Fernandez, A. Characterization and Photocatalytic Activity in Aqueous Medium of TiO2 and Ag-TiO2 Coatings on Quartz. Appl. Catal. B: Environ. 1997, 13, 219–228. DOI: 10.1016/S0926-3373(96)00107-5.
  • Ding, Z.; Hu, X.; Lu, G. Q.; Yue, P.-L.; Greenfield, P. F. Novel Silica Gel Supported TiO2 Photocatalyst Synthesized by CVD Method. Langmuir 2000, 16, 6216–6222. DOI: 10.1021/la000119l.
  • Anandan, S.; Yoon, M. Photocatalytic Activities of the Nano-Sized TiO2-Supported Y-Zeolites. J. Photochem. Photobiol. C: Photochem. Rev. 2003, 4, 5–18. DOI: 10.1016/S1389-5567(03)00002-9.
  • Wang, R.-C.; Fan, K.-S.; Chang, J.-S. Removal of Acid Dye by ZnFe2O4/TiO2-Immobilized Granular Activated Carbon under Visible Light Irradiation in a Recycle Liquid–Solid Fluidized Bed. J. Taiwan Inst. Chem. Eng. 2009, 40, 533–540. DOI: 10.1016/j.jtice.2009.02.001.
  • Chen, Y.; Dionysiou, D. D. TiO2 Photocatalytic Films on Stainless Steel: The Role of Degussa P-25 in Modified Sol–Gel Methods. Appl. Catal. B: Environ. 2006, 62, 255–264. DOI: 10.1016/j.apcatb.2005.07.017.
  • Horikoshi, S.; Watanabe, N.; Onishi, H.; Hidaka, H.; Serpone, N. Photodecomposition of a Nonylphenol Polyethoxylate Surfactant in a Cylindrical Photoreactor with TiO2 Immobilized Fiberglass Cloth. Appl. Catal. B: Environ. 2002, 37, 117–129. DOI: 10.1016/S0926-3373(01)00330-7.
  • Valencia, S.; Marín, J.; Restrepo, G. Photocatalytic Degradation of Humic Acids with Titanium Dioxide Embedded into Polyethylene Pellets to Enhance the Postrecovery of Catalyst. Environ. Eng. Sci. 2018, 35, 185–193. DOI: 10.1089/ees.2017.0091.
  • Bekbölet, M.; Lindner, M.; Weichgrebe, D.; Bahnemann, D. Photocatalytic Detoxification with the Thin-Film Fixed-Bed Reactor (TFFBR): Clean-up of Highly Polluted Landfill Effluents Using a Novel TiO2-Photocatalyst. Solar Energy. 1996, 56, 455–469. DOI: 10.1016/0038-092X(96)00020-5.
  • Arslan, I.; Balcioglu, I.; Bahnemann, D. Photochemical Treatment of Simulated Dyehouse Effluents by Novel TiO2 Photocatalysts: Experience with the Thin Film Fixed Bed (TFFB) and Double Skin Sheet (DSS) Reactor. Water Sci. Technol. 2001, 44, 171–178. DOI: 10.2166/wst.2001.0279.
  • Behpour, M.; Mehrzad, M.; Hosseinpour-Mashkani, S. TiO2 Thin Film: preparation, Characterization, and Its Photocatalytic Degradation of Basic Yellow 28 Dye. J. Nanostruct. 2015, 5, 183–187.
  • Patil, S. R.; Akpan, U.; Hameed, B. Photocatalytic Activity of Sol–Gel-Derived Mesoporous TiO2 Thin Films for Reactive Orange 16 Degradation. Desalin. Water Treat. 2015, 53, 3604–3614. DOI: 10.1080/19443994.2013.872577.
  • Feitz, A.; Boyden, B.; Waite, T. Evaluation of Two Solar Pilot Scale Fixed-Bed Photocatalytic Reactors. Water Res. 2000, 34, 3927–3932. DOI: 10.1016/S0043-1354(00)00153-6.
  • Swain, A. K.; Sahoo, A.; Jena, H. M.; Patra, H. Industrial Wastewater Treatment by Aerobic Inverse Fluidized Bed Biofilm Reactors (AIFBBRs): A Review. J. Water Process Eng. 2018, 23, 61–74. DOI: 10.1016/j.jwpe.2018.02.017.
  • Seyyedi, K.; Jahromi, M. A. F. Decolorization of Azo Dye CI Direct Black 38 by Photocatalytic Method Using TiO2 and Optimizing of Process. Apcbee Proc. 2014, 10, 115–119. DOI: 10.1016/j.apcbee.2014.10.027.
  • Zhou, M. Novel photocatalytic TiO2-based porous membranes prepared by plasma-enhanced chemical vapor deposition (PECVD) for organic pollutant degradation in water, 2015.
  • Praveen, P.; Viruthagiri, G.; Mugundan, S.; Shanmugam, N. Structural, Optical and Morphological Analyses of Pristine Titanium di-Oxide Nanoparticles–Synthesized via Sol–Gel Route. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 117, 622–629. DOI: 10.1016/j.saa.2013.09.037.
  • Shourong, Z.; Qingguo, H.; Jun, Z.; Bingkun, W. A Study on Dye Photoremoval in TiO2 Suspension Solution. J. Photochem. Photobiol. A Chem. 1997, 108, 235–238. DOI: 10.1016/S1010-6030(97)00014-2.
  • Sohrabi, M. R.; Khavaran, A.; Shariati, S.; Shariati, S. Removal of Carmoisine Edible Dye by Fenton and Photo Fenton Processes Using Taguchi Orthogonal Array Design. Arab. J. Chem. 2017, 10, S3523–S3531. DOI: 10.1016/j.arabjc.2014.02.019.
  • Ahmed, L. M.; Jassim, M.; Mohammed, M.; Hamza, D. Advanced Oxidation Processes for Carmoisine (E122) Dye in UVA/ZnO System: Influencing pH, Temperature and Oxidant Agents on Dye Solution. J. Global Pharma. Technol. 2018, 10, 248–254.
  • Malviya, A.; Kaur, D. Removal of Toxic Azo Dyes from Wastewater Using Bottom Ash—Equilibrium Isothermal Modeling. Orient. J. Chem. 2012, 28, 955. DOI: 10.13005/ojc/280242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.