Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 12
484
Views
13
CrossRef citations to date
0
Altmetric
Articles

Synthesis of N-doped TiO2/SiO2/Fe3O4 magnetic nanocomposites as a novel purple LED illumination-driven photocatalyst for photocatalytic and photoelectrocatalytic degradation of naproxen: optimization and different scavenger agents study

, , , &
Pages 1254-1267 | Received 31 Jul 2019, Accepted 23 Sep 2019, Published online: 08 Oct 2019

References

  • Cardoso, O.; Porcher, J.-M.; Sanchez, W. Factory-Discharged Pharmaceuticals Could Be a Relevant Source of Aquatic Environment Contamination: Review of Evidence and Need for Knowledge. Chemosphere 2014, 115, 20–30. DOI: 10.1016/j.chemosphere.2014.02.004.
  • Vaiano, V.; Sacco, O.; Matarangolo, M. Photocatalytic Degradation of Paracetamol under UV Irradiation Using TiO2-Graphite Composites. Catal. Today 2018, 315, 230–236. DOI: 10.1016/j.cattod.2018.02.002.
  • Hu, J.; Zhang, L. L.; Chen, J. M.; Liu, Y. Degradation of Paracetamol by Pseudomonas aeruginosa Strain HJ1012. J. Environ. Sci. Health 2013, 48, 791–799. DOI: 10.1080/10934529.2013.744650.
  • Miao, X.-S.; Bishay, F.; Chen, M.; Metcalfe, C. D. Occurrence of Antimicrobials in the Final Effluents of Wastewater Treatment Plants in Canada. Environ. Sci. Technol. 2004, 38, 3533–3541. DOI: 10.1021/es030653q.
  • Nikolaou, A.; Meric, S.; Fatta, D. Occurrence Patterns of Pharmaceuticals in Water and Wastewater Environments. Anal. Bioanal. Chem. 2007, 387, 1225–1234. DOI: 10.1007/s00216-006-1035-8.
  • Anderson, P. D.; D’Aco, V. J.; Shanahan, P.; Chapra, S. C.; Buzby, M. E.; Cunningham, V. L.; DuPlessie, B. M.; Hayes, E. P.; Mastrocco, F. J.; Parke, N. J.; et al. Screening Analysis of Human Pharmaceutical Compounds in US Surface Waters. Environ. Sci. Technol. 2004, 38, 838–849. DOI: 10.1021/es034430b.
  • Rabiet, M.; Togola, A.; Brissaud, F.; Seidel, J.-L.; Budzinski, H.; Elbaz-Poulichet, F. Consequences of Treated Water Recycling as Regards Pharmaceuticals and Drugs in Surface and Ground Waters of a Medium-Sized Mediterranean Catchment. Environ. Sci. Technol. 2006, 40, 5282–5288. DOI: 10.1021/es060528p.
  • Stackelberg, P. E.; Furlong, E. T.; Meyer, M. T.; Zaugg, S. D.; Henderson, A. K.; Reissman, D. B. Persistence of Pharmaceutical Compounds and Other Organic Wastewater Contaminants in a Conventional Drinking-Water-Treatment Plant. Sci. Total Environ. 2004, 329, 99–113. DOI: 10.1016/j.scitotenv.2004.03.015.
  • Ikehata, K.; Jodeiri Naghashkar, N.; Gamal El-Din, M. Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review. Ozone: Sci Eng. 2006, 28, 353–414. DOI: 10.1080/01919510600985937.
  • Stumpf, M.; Ternes, T. A.; Wilken, R.-D.; Rodrigues, S. V.; Baumann, W. Polar Drug Residues in Sewage and Natural Waters in the State of Rio De Janeiro, Brazil. Sci. Total Environ. 1999, 225, 135–141. DOI: 10.1016/s0048-9697(98)00339-8.
  • Tixier, C.; Singer, H. P.; Oellers, S.; Müller, S. R. Occurrence and Fate of Carbamazepine, Clofibric Acid, Diclofenac, Ibuprofen, Ketoprofen, and Naproxen in Surface Waters. Environ. Sci. Technol. 2003, 37, 1061–1068. DOI: 10.1021/es025834r.
  • Achilleos, A.; Hapeshi, E.; Xekoukoulotakis, N.; Mantzavinos, D.; Fatta-Kassinos, D. UV-a and Solar Photodegradation of Ibuprofen and Carbamazepine Catalyzed by TiO2. Sep. Sci. Technol. 2010, 45, 1564–1570. DOI: 10.1080/01496395.2010.487463.
  • Khalil Abad, N.; Moghaddam, S.; Mozammel, J.; Mostafaei, M.; Chmielus, A. M. Growth Mechanism and Charge Transport Properties of Hybrid Au/ZnO Nanoprisms. J Alloys Compd. 2019, 777, 1386–1395.
  • Zhang, G.; Zhang, Y. C.; Nadagouda, M.; Han, C.; O’Shea, K.; El-Sheikh, S. M.; Ismail, A. A.; Dionysiou, D. D. Visible Light-Sensitized S, N and C co-Doped Polymorphic TiO2 for Photocatalytic Destruction of Microcystin-LR. Appl. Catal. B 2014, 144, 614–621. DOI: 10.1016/j.apcatb.2013.07.058.
  • Amor, C. O.; Virlan, C.; Pui, A.; Elaloui, E. Effect of Dysprosium Ion (Dy3+) Doping on Morphological, Crystal Growth and Optical Properties of TiO2 Particles and Thin Films. Physica B 2019, 560, 67–74.
  • Anpo, M.; Dohshi, S.; Kitano, M.; Hu, Y.; Takeuchi, M.; Matsuoka, M. The Preparation and Characterization of Highly Efficient Titanium Oxide–Based Photofunctional Materials. Annu. Rev. Mater. Res. 2005, 35, 1–27. DOI: 10.1146/annurev.matsci.35.100303.121340.
  • Asadi, A.; Akbarzadeh, R.; Eslami, A.; Jen, T.-C.; Oviroh, P. O. Effect of Synthesis Method on NS-TiO2 Photocatalytic Performance. Energy Procedia 2019, 158, 4542–4547. DOI: 10.1016/j.egypro.2019.01.756.
  • Haghighatmamaghani, A.; Haghighat, F.; Lee, C.-S. Performance of Various Commercial TiO2 in Photocatalytic Degradation of a Mixture of Indoor Air Pollutants: Effect of Photocatalyst and Operating Parameters. Sci. Technol. Built Environ. 2019, 25, 600–614.
  • Dette, C.; Pérez-Osorio, M. A.; Kley, C. S.; Punke, P.; Patrick, C. E.; Jacobson, P.; Giustino, F.; Jung, S. J.; Kern, K. TiO2 Anatase with a Bandgap in the Visible Region. Nano Lett. 2014, 14, 6533–6538. DOI: 10.1021/nl503131s.
  • Wu, Y.; Xing, M.; Tian, B.; Zhang, J.; Chen, F. Preparation of Nitrogen and Fluorine Co-Doped Mesoporous TiO2 Microsphere and Photodegradation of Acid Orange 7 under Visible Light. Chem. Eng. J. 2010, 162, 710–717. DOI: 10.1016/j.cej.2010.06.030.
  • Li, R.-Q.; Li, D.-X.; Zhou, D.-T.; Qin, X.-M.; Yan, W.-J. Theoretical Studies on the Electronic Structures and Optical Properties of (Cu, C)-Codoped Rutile TiO2 from GGA + U Calculations. J. Mol. Graphics Modell. 2019, 90, 104–108.
  • Dozzi, M. V.; Selli, E. Doping TiO2 with p-Block Elements: Effects on Photocatalytic Activity. J. Photochem. Photobiol. C 2013, 14, 13–28. DOI: 10.1016/j.jphotochemrev.2012.09.002.
  • Zhang, W.; Zou, L.; Lewis, R.; Dionysio, D. A Review of Visible-Light Sensitive TiO2 Synthesis via Sol-Gel N-Doping for the Degradation of Dissolved Organic Compounds in Wastewater Treatment. J. Mater. Sci. Chem. Eng. 2014, 2, 28–40. DOI: 10.4236/msce.2014.211005.
  • Huang, Z.; Gao, Z.; Gao, S.; Wang, Q.; Wang, Z.; Huang, B.; Dai, Y. Facile Synthesis of S-Doped Reduced TiO2-x with Enhanced Visible-Light Photocatalytic Performance. Chin. J. Catal. 2017, 38, 821–830. DOI: 10.1016/S1872-2067(17)62825-0.
  • Gombac, V.; De Rogatis, L.; Gasparotto, A.; Vicario, G.; Montini, T.; Barreca, D.; Balducci, G.; Fornasiero, P.; Tondello, E.; Graziani, M. TiO2 Nanopowders Doped with Boron and Nitrogen for Photocatalytic Applications. Chem. Phys. 2007, 339, 111–123. DOI: 10.1016/j.chemphys.2007.05.024.
  • Xie, Y.; Li, Y.; Zhao, X. Low-Temperature Preparation and Visible-Light-Induced Catalytic Activity of Anatase F–N-Codoped TiO2. J. Mol. Catal. A 2007, 277, 119–126. DOI: 10.1016/j.molcata.2007.07.031.
  • Linsebigler, A. L.; Lu, G.; Yates, J. T. Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735–758. DOI: 10.1021/cr00035a013.
  • Chang, W.; Yan, L.; Liu, B.; Sun, R. Photocatalyic Activity of Double Pore Structure TiO2/SiO2 Monoliths. Ceram. Int. 2017, 43, 5881–5886.
  • Anderson, C.; Bard, A. J. An Improved Photocatalyst of TiO2/SiO2 Prepared by a Sol-Gel Synthesis. J. Phys. Chem. 1995, 99, 9882–9885. DOI: 10.1021/j100024a033.
  • Islam, S.; Rahman, R. A.; Othaman, Z.; Riaz, S.; Saeed, M.; Naseem, S. Preparation and Characterization of Crack-Free Sol–Gel Based SiO2–TiO2 Hybrid Nanoparticle Film. J. Sol-Gel Sci. Technol. 2013, 68, 162–168. DOI: 10.1007/s10971-013-3147-x.
  • Wang, Y.; Xing, Z.; Li, Z.; Wu, X.; Wang, G.; Zhou, W. Facile Synthesis of High-Thermostably Ordered Mesoporous TiO2/SiO2 Nanocomposites: An Effective Bifunctional Candidate for Removing Arsenic Contaminations. J. Colloid Interface Sci. 2017, 485, 32–38. DOI: 10.1016/j.jcis.2016.09.022.
  • Álvarez, P. M.; Jaramillo, J.; Lopez-Pinero, F.; Plucinski, P. K. Preparation and Characterization of Magnetic TiO2 Nanoparticles and Their Utilization for the Degradation of Emerging Pollutants in Water. Appl. Catal. B 2010, 100, 338–345. DOI: 10.1016/j.apcatb.2010.08.010.
  • Gad-Allah, T. A.; Kato, S.; Satokawa, S.; Kojima, T. Treatment of Synthetic Dyes Wastewater Utilizing a Magnetically Separable Photocatalyst (TiO2/SiO2/Fe3O4): Parametric and Kinetic Studies. Desalination 2009, 244, 1–11. DOI: 10.1016/j.desal.2008.04.031.
  • Pang, D.; Qiu, L.; Wang, Y.; Zhu, R.; Ouyang, F. Photocatalytic Decomposition of Acrylonitrile with N–F Codoped TiO2/SiO2 under Simulant Solar Light Irradiation. J. Environ. Sci. 2015, 33, 169–178. DOI: 10.1016/j.jes.2015.01.017.
  • Im, J.-K.; Cho, I.-H.; Kim, S.-K.; Zoh, K.-D. Optimization of Carbamazepine Removal in O3/UV/H2O2 System Using a Response Surface Methodology with Central Composite Design. Desalination 2012, 285, 306–314. DOI: 10.1016/j.desal.2011.10.018.
  • Jamshidi, M.; Ghaedi, M.; Dashtian, K.; Hajati, S. New Ion-Imprinted Polymer-Functionalized Mesoporous SBA-15 for Selective Separation and Preconcentration of Cr(Iii) Ions: Modeling and Optimization. RSC Adv. 2015, 5, 105789–105799. DOI: 10.1039/C5RA17873H.
  • Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S. M.; Hamilton, J. W. J.; Byrne, J. A.; O’Shea, K.; et al. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal. B 2012, 125, 331–349. DOI: 10.1016/j.apcatb.2012.05.036.
  • Hamadanian, M.; Reisi-Vanani, A.; Behpour, M.; Esmaeily, A. S. Synthesis and Characterization of Fe, S-Codoped TiO2 Nanoparticles: Application in Degradation of Organic Water Pollutants. Desalination 2011, 281, 319–324. DOI: 10.1016/j.desal.2011.08.028.
  • Hosseini, M.; Nasiri Khalil Abad, S.; Najibi Ilkhechi, N.; Mozammel, M.; Eftekhari, N. The Role of Sn–Fe co-Doping on the Atomic Structure, Phase Transformation and Antibacterial Activity of TiO2 Nanoparticles. Mater. Res. Express 2019, 6, 1050c1. DOI: 10.1088/2053-1591/ab4017.
  • Mohamed, R.; McKinney, D.; Sigmund, W. Enhanced Nanocatalysts. Mater. Sci. Eng. R 2012, 73, 1–13. DOI: 10.1016/j.mser.2011.09.001.
  • Yusoff, A. H. M.; Salimi, M. N.; Jamlos, M. F. Synthesis and Characterization of Biocompatible Fe3O4 Nanoparticles at Different pH. AIP Conf. Proc. 2017, 1835, 020010.
  • León, A.; Reuquen, P.; Garín, C.; Segura, R.; Vargas, P.; Zapata, P.; Orihuela, P. A. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Appl. Sci. 2017, 7, 49. DOI: 10.3390/app7010049.
  • Castellanos-Leal, E. L.; Acevedo-Peña, P.; Güiza-Argüello, V. R.; Córdoba-Tuta, E. M. N and F Codoped TiO2 Thin Films on Stainless Steel for Photoelectrocatalytic Removal of Cyanide Ions in Aqueous Solutions. Mater. Res. 2017, 20, 487–495. DOI: 10.1590/1980-5373-mr-2016-0214.
  • Do, Y.; Cho, I.; Park, Y.; Pradhan, D.; Sohn, Y. CO Oxidation Activities of Ni and Pd-TiO2@SiO2 Core-Shell Nanostructures. Bull. Korean Chem. Soc. 2013, 34, 3635–3640. DOI: 10.5012/bkcs.2013.34.12.3635.
  • Onyiriuka, E. C. Aluminum, Titanium Boride, and Nitride Films Sputter-Deposited from Multicomponent Alloy Targets Studied by XPS. Appl. Spectrosc. 1993, 47, 35–37. DOI: 10.1366/0003702934048488.
  • Lv, J.; Sheng, T.; Su, L.; Xu, G.; Wang, D.; Zheng, Z.; Wu, Y. N, S Co-Doped-TiO2/Fly Ash Beads Composite Material and Visible Light Photocatalytic Activity. Appl. Surf. Sci. 2013, 284, 229–234. DOI: 10.1016/j.apsusc.2013.07.086.
  • Bu, J.; Fang, J.; Shi, F-c.; Jiang, Z-q.; Huang, W-x. Photocatalytic Activity of N-Doped TiO2 Photocatalysts Prepared from the Molecular Precursor (NH4)2TiO (C2O4)2. Chin. J. Chem. Phys. 2010, 23, 95–101. DOI: 10.1088/1674-0068/23/01/95-101.
  • Petrović, S.; Stojadinović, S.; Rožić, L.; Radić, N.; Grbić, B.; Vasilić, R. Process Modelling and Analysis of Plasma Electrolytic Oxidation of Titanium for TiO2/WO3 Thin Film Photocatalysts by Response Surface Methodology. Surf. Coat. Technol. 2015, 269, 250–257. DOI: 10.1016/j.surfcoat.2014.12.026.
  • Herrmann, J.-M. Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catal. Today 1999, 53, 115–129. DOI: 10.1016/S0920-5861(99)00107-8.
  • Konstantinou, I. K.; Albanis, T. A. TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations: A Review. Appl Catal. B 2004, 49, 1–14. DOI: 10.1016/j.apcatb.2003.11.010.
  • Kumar, P. S.; Karuthapandian, S.; Umadevi, M.; Elangovan, A.; Muthuraj, V. Light Induced Synthesis of Sr/CdSe Nanocomposite for the Highly Synergistic Photodegradation of Methylene Blue Dye Solution. Mater. Focus. 2016, 5, 128–136. DOI: 10.1166/mat.2016.1301.
  • Kumar, P. S.; Prabavathi, S. L.; Indurani, P.; Karuthapandian, S.; Muthuraj, V. Light Assisted Synthesis of Hierarchically Structured Cu/CdS Nanorods with Superior Photocatalytic Activity, Stability and Photocatalytic Mechanism. Sep. Purif. Technol. 2017, 172, 192–201. DOI: 10.1016/j.seppur.2016.08.017.
  • Ye, L.; Liu, J.; Gong, C.; Tian, L.; Peng, T.; Zan, L. Two Different Roles of Metallic Ag on Ag/AgX/BiOX (X = Cl, Br) Visible Light Photocatalysts: Surface Plasmon Resonance and Z-Scheme Bridge. ACS Catal. 2012, 2, 1677–1683. DOI: 10.1021/cs300213m.
  • Boxwell, M. The Solar Electricity Handbook-2017 Edition: A Simple, Practical Guide to Solar Energy–Designing and Installing Solar Photovoltaic Systems; Greenstream Publishing; London, UK, 2017.
  • Jallouli, N.; Elghniji, K.; Hentati, O.; Ribeiro, A. R.; Silva, A. M. T.; Ksibi, M. UV and Solar Photo-Degradation of Naproxen: TiO2 Catalyst Effect, Reaction Kinetics, Products Identification and Toxicity Assessment. J. Hazard. Mater. 2016, 304, 329–336. DOI: 10.1016/j.jhazmat.2015.10.045.
  • Wang, F.; Wang, Y.; Feng, Y.; Zeng, Y.; Xie, Z.; Zhang, Q.; Su, Y.; Chen, P.; Liu, Y.; Yao, K.; et al. Novel Ternary Photocatalyst of Single Atom-Dispersed Silver and Carbon Quantum Dots Co-Loaded with Ultrathin g-C3N4 for Broad Spectrum Photocatalytic Degradation of Naproxen. Appl. Catal. B 2018, 221, 510–520. DOI: 10.1016/j.apcatb.2017.09.055.
  • Uheida, A.; Mohamed, A.; Belaqziz, M.; Nasser, W. S. Photocatalytic Degradation of Ibuprofen, Naproxen, and Cetirizine Using PAN-MWCNT Nanofibers Crosslinked TiO2-NH2 Nanoparticles under Visible Light Irradiation. Sep. Purif. Technol. 2019, 212, 110–118. DOI: 10.1016/j.seppur.2018.11.030.
  • Prieto-Rodriguez, L.; Miralles-Cuevas, S.; Oller, I.; Agüera, A.; Puma, G. L.; Malato, S. Treatment of Emerging Contaminants in Wastewater Treatment Plants (WWTP) Effluents by Solar Photocatalysis Using Low TiO2 Concentrations. J. Hazard. Mater. 2012, 211–212, 131–137. DOI: 10.1016/j.jhazmat.2011.09.008.
  • Hinojosa-Reyes, M.; Camposeco-Solis, R.; Ruiz, F.; Rodríguez-González, V.; Moctezuma, E. Promotional Effect of Metal Doping on Nanostructured TiO2 during the Photocatalytic Degradation of 4-Chlorophenol and Naproxen Sodium as Pollutants. Mater. Sci. Semicon. Proc. 2019, 100, 130–139. DOI: 10.1016/j.mssp.2019.04.050.
  • Begum, S.; Ahmaruzzaman, M. Biogenic Synthesis of SnO2/Activated Carbon Nanocomposite and Its Application as Photocatalyst in the Degradation of Naproxen. Appl. Surf. Sci. 2018, 449, 780–789. DOI: 10.1016/j.apsusc.2018.02.069.
  • Regmi, C.; Kshetri, Y. K.; Pandey, R. P.; Lee, S. W. Visible-Light-Driven S and W Co-Doped Dendritic BiVO4 for Efficient Photocatalytic Degradation of Naproxen and Its Mechanistic Analysis. Mol. Catal. 2018, 453, 149–160. DOI: 10.1016/j.mcat.2018.05.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.