Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 2
312
Views
8
CrossRef citations to date
0
Altmetric
Articles

Electrochemical synthesis of carbon nano spheres and its application for detection of ciprofloxacin

, &
Pages 142-150 | Received 27 Aug 2019, Accepted 26 Sep 2019, Published online: 08 Oct 2019

References

  • Zuo, J.; Jiang, T.; Zhao, X.; Xiong, X.; Xiao, S.; Zhu, Z. Preparation and Application of Fluorescent Carbon Dots. J. Nanomater. 2015, 2015, 1. DOI: 10.1155/2015/787862.
  • Clapp, A. R.; Pons, T.; Medintz, I. L.; Delehanty, J. B.; Melinger, J. S.; Tiefenbrunn, T.; Dawson, P. E.; Fisher, B. R.; O'Rourke, B.; Mattoussi, H. Two-Photon Excitation of Quantum-Dot-Based Fluorescence Resonance Energy Transfer and Its Applications. Adv. Mater. 2007, 19, 1921–1926. DOI: 10.1002/adma.200602036.
  • Probst, C. E.; Zrazhevskiy, P.; Bagalkot, V.; Gao, X. Quantum Dots as a Platform for Nanoparticle Drug Delivery Vehicle Design. Adv. Drug Deliv. Rev. 2013, 65, 703–718. DOI: 10.1016/j.addr.2012.09.036.
  • Li, H.; Wei, X.; Xu, Y.; Hao, T.; Dai, J.; Wang, J.; Gao, L.; Yan, Y. Determination of Aspirin Using Functionalized Cadmium-Tellurium Quantum Dots as a Fluorescence Probe. Anal. Lett. 2015, 48, 1117–1127. DOI: 10.1080/00032719.2014.974055.
  • Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo. Science 2003, 300, 1434–1436. DOI: 10.1126/science.1083780.
  • Geys, J.; Nemmar, A.; Verbeken, E.; Smolders, E.; Ratoi, M.; Hoylaerts, M. F.; Nemery, B.; Hoet, P. H. Acute Toxicity and Prothrombotic Effects of Quantum Dots: Impact of Surface Charge. Environ. Health Perspect. 2008, 116, 1607–1613. DOI: 10.1289/ehp.11566.
  • Liu, R.; Wu, D.; Liu, S.; Koynov, K.; Knoll, W.; Li, Q. An Aqueous Route to Multicolor Photoluminescent Carbon Dots Using Silica Spheres as Carriers. Angew. Chem. Int. Ed. 2009, 48, 4598–4601. DOI: 10.1002/anie.200900652.
  • Qu, S.; Wang, X.; Lu, Q.; Liu, X.; Wang, L. A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots. Angew. Chem. Int. Ed. 2012, 51, 12215–12218. DOI: 10.1002/anie.201206791.
  • Jiang, C.; Wu, H.; Song, X.; Ma, X.; Wang, J.; Tan, M. Presence of Photoluminescent Carbon Dots in Nescafe® Original Instant Coffee: Applications to Bioimaging. Talanta 2014, 127, 68–74. DOI: 10.1016/j.talanta.2014.01.046.
  • Nie, H.; Li, M.; Li, Q.; Liang, S.; Tan, Y.; Sheng, L.; Shi, W.; Zhang, S. X.-A. Carbon Dots with Continuously Tunable Full-Color Emission and Their Application in Ratiometric pH Sensing. Chem. Mater. 2014, 26, 3104–3112. DOI: 10.1021/cm5003669.
  • Qian, Z.; Ma, J.; Shan, X.; Feng, H.; Shao, L.; Chen, J. Highly Luminescent N-Doped Carbon Quantum Dots as an Effective Multifunctional Fluorescence Sensing Platform. Chem. Eur. J. 2014, 20, 2254–2263. DOI: 10.1002/chem.201304374.
  • Thakur, M.; Pandey, S.; Mewada, A.; Patil, V.; Khade, M.; Goshi, E.; Sharon, M. Antibiotic Conjugated Fluorescent Carbon Dots as a Theranostic Agent for Controlled Drug Release, Bioimaging, and Enhanced Antimicrobial Activity. J. Drug Deliv. 2014, 2014, 1. DOI: 10.1155/2014/282193.
  • Cao, L.; Sahu, S.; Anilkumar, P.; Bunker, C. E.; Xu, J.; Fernando, K. S.; Wang, P.; Guliants, E. A.; Tackett, K. N.; Sun, Y.-P. Carbon Nanoparticles as Visible-Light Photocatalysts for Efficient CO2 Conversion and beyond. J. Am. Chem. Soc. 2011, 133, 4754–4757. DOI: 10.1021/ja200804h.
  • Nieto-Márquez, A.; Romero, R.; Romero, A.; Valverde, J. L. Carbon Nanospheres: Synthesis, Physicochemical Properties and Applications. J. Mater. Chem. 2011, 21, 1664–1672. DOI: 10.1039/C0JM01350A.
  • Pal, T.; Mohiyuddin, S.; Packirisamy, G. Facile and Green Synthesis of Multicolor Fluorescence Carbon Dots from Curcumin: In Vitro and in Vivo Bioimaging and Other Applications. ACS Omega 2018, 3, 831–843. DOI: 10.1021/acsomega.7b01323.
  • Satpati, A.; Sahoo, S.; Dey, M.; Reddy, A.; Mukherjee, T. Electrochemical and Spectroelectrochemical Investigations of Quercetin on Unmodified and DNA-Modified Carbon Paste Electrode and Its Determination Using Voltammetry. Anal. Methods 2011, 3, 1344–1350. DOI: 10.1039/c1ay05026e.
  • Dey, M.; Satpati, A.; Sahoo, S.; Kameswaran, R.; Reddy, A.; Mukherjee, T. Bi-Film on a Carbon Paste Electrode Modified with Nafion Film Embedded with Multiwall Carbon Nano Tubes for the Determination of Heavy Metals. Anal. Methods 2011, 3, 2540–2546. DOI: 10.1039/c1ay05339f.
  • Sahoo, P.; Panigrahy, B.; Sahoo, S.; Satpati, A.; Li, D.; Bahadur, D. In Situ Synthesis and Properties of Reduced Graphene Oxide/Bi Nanocomposites: As an Electroactive Material for Analysis of Heavy Metals. Biosens. Bioelectron. 2013, 43, 293–296. DOI: 10.1016/j.bios.2012.12.031.
  • Sahoo, S.; Satpati, A.; Reddy, A. Electrodeposited Bi-Au Nanocomposite Modified Carbon Paste Electrode for the Simultaneous Determination of Copper and Mercury. RSC Adv. 2015, 5, 25794–25800. DOI: 10.1039/C5RA02977E.
  • Sahoo, P.; Sahoo, S.; Satpati, A.; Bahadur, D. Solvothermal Synthesis of Reduced Graphene Oxide/Au Nanocomposite-Modified Electrode for the Determination of Inorganic Mercury and Electrochemical Oxidation of Toxic Phenolic Compounds. Electrochim. Acta 2015, 180, 1023–1032. DOI: 10.1016/j.electacta.2015.09.018.
  • Sahoo, S.; Sahoo, P. K.; Satpati, A. K. Gold Nano Particle and Reduced Graphene Oxide Composite Modified Carbon Paste Electrode for the Ultra Trace Detection of Arsenic (III). Electroanalysis 2017, 29, 1400–1409. DOI: 10.1002/elan.201600676.
  • Dey, M. K.; Kumar, S.; Satpati, A. K. Probing Adsorptive/Desorptive Redox Processes and Detection of Cysteine: A Voltammetric and Scanning Electrochemical Microscopy Study. Electroanal. Chem. 2017, 807, 119–127. DOI: 10.1016/j.jelechem.2017.11.043.
  • Dey, M. K.; Satpati, A. K.; Reddy, A. Electrochemical Determination of Melamine on Static Mercury Drop Electrode and on Gold Nano Particle Modified Carbon Paste Electrode. Am. J. Anal. Chem. 2014, 05, 598. DOI: 10.4236/ajac.2014.59067.
  • Sahoo, S.; Satpati, A.; Reddy, A. Stripping Voltammetric Determination of Uranium in Water Samples Using Hg-Thin Film Modified Multiwall Carbon Nanotube Incorporated Carbon Paste Electrode. Am. J. Anal. Chem. 2013, 04, 141. DOI: 10.4236/ajac.2013.43019.
  • Ali, K. F. Estimation and Evaluation of the Effect of pH on Ciprofloxacin in Drug Formulations. J. Chem. Pharm. Res. 2014, 6, 910–916.
  • Rajendiran, N.; Suresh, M. Study of the Interaction of Ciprofloxacin and Sparfloxacin with Biomolecules by Spectral, Electrochemical and Molecular Docking Methods. Int. Lett. Chem. Phys. Astron. 2018, 78, 1. DOI: 10.18052/www.scipress.com/ILCPA.78.1.
  • Ferech, M.; Coenen, S.; Malhotra-Kumar, S.; Dvorakova, K.; Hendrickx, E.; Suetens, C.; Goossens, H. European Surveillance of Antimicrobial Consumption (ESAC): Outpatient Antibiotic Use in Europe. J. Antimicrob. Chemother. 2006, 58, 401–407. DOI: 10.1093/jac/dkl188.
  • Zhang, F.; Gu, S.; Ding, Y.; Li, L.; Liu, X. Simultaneous Determination of Ofloxacin and Gatifloxacin on Cysteic Acid Modified Electrode in the Presence of Sodium Dodecyl Benzene Sulfonate. Bioelectrochemistry 2013, 89, 42–49. DOI: 10.1016/j.bioelechem.2012.08.008.
  • Zaidi, N.; Ahmad, E.; Rehan, M.; Rabbani, G.; Ajmal, M. R.; Zaidi, Y.; Subbarao, N.; Khan, R. H. Biophysical Insight into Furosemide Binding to Human Serum Albumin: A Study to Unveil Its Impaired Albumin Binding in Uremia. J. Phys. Chem. B 2013, 117, 2595–2604. DOI: 10.1021/jp3069877.
  • Liu, X.-Y.; Wang, Q.; Shi, Z.-H.; Xia, X.-H.; Sun, H.-W. Interaction Characteristic Studies of Ciprofloxacin and/or Sulphadiazine with Bovine Serum Albumin by Spectroscopic Technique. Asian J. Chem. 2015, 27, 818–826. DOI: 10.14233/ajchem.2015.17121.
  • Ipte, P. R.; Sahoo, S.; Satpati, A. Spectro-Electrochemistry of Ciprofloxacin and Probing Its Interaction with Bovine Serum Albumin. Bioelectrochemistry 2019, 130, 107330. DOI: 10.1016/j.bioelechem.2019.107330.
  • Danner, M.-C.; Robertson, A.; Behrends, V.; Reiss, J. Antibiotic Pollution in Surface Fresh Waters: Occurrence and Effects. Sci. Total Environ. 2019, 664, 793. DOI: 10.1016/j.scitotenv.2019.01.406.
  • Ben, Y.; Fu, C.; Hu, M.; Liu, L.; Wong, M. H.; Zheng, C. Human Health Risk Assessment of Antibiotic Resistance Associated with Antibiotic Residues in the Environment: A Review. Environ. Res. 2018, 169, 483–493. DOI: 10.1016/j.envres.2018.11.040.
  • Dorival-García, N.; Zafra-Gómez, A.; Cantarero, S.; Navalón, A.; Vílchez, J. Simultaneous Determination of 13 Quinolone Antibiotic Derivatives in Wastewater Samples Using Solid-Phase Extraction and Ultra Performance Liquid Chromatography–Tandem Mass Spectrometry. Microchem. J. 2013, 106, 323–333. DOI: 10.1016/j.microc.2012.09.002.
  • Ghoneim, M.; Radi, A.; Beltagi, A. Determination of Norfloxacin by Square-Wave Adsorptive Voltammetry on a Glassy Carbon Electrode. J. Pharm. Biomed. Anal. 2001, 25, 205–210. DOI: 10.1016/S0731-7085(00)00475-1.
  • Ni, Y.; Wang, Y.; Kokot, S. Simultaneous Determination of Three Fluoroquinolones by Linear Sweep Stripping Voltammetry with the Aid of Chemometrics. Talanta 2006, 69, 216–225. DOI: 10.1016/j.talanta.2005.09.032.
  • Pascual-Reguera, M. I.; Parras, G. P.; Dı́az, A. M. Solid-Phase UV Spectrophotometric Method for Determination of Ciprofloxacin. Microchem. J. 2004, 77, 79–84. DOI: 10.1016/j.microc.2004.01.003.
  • Wang, P.-L.; Feng, Y.-L.; Chen, L. Simultaneous Determination of Trace Norfloxacin, Pefloxacin, and Ciprofloxacin by TLC–Fluorescence Spectrodensitometry. Microchem. J. 1997, 56, 229–235. DOI: 10.1006/mchj.1996.1396.
  • Barrón, D.; Jiménez-Lozano, E.; Cano, J.; Barbosa, J. Determination of Residues of Enrofloxacin and Its Metabolite Ciprofloxacin in Biological Materials by Capillary Electrophoresis. J. Chromatogr. B Biomed. Sci. Appl. 2001, 759, 73–79. DOI: 10.1016/S0378-4347(01)00214-6.
  • Espinosa-Mansilla, A.; de la Peña, A. M.; Salinas, F.; Gómez, D. G. Partial Least Squares Multicomponent Fluorimetric Determination of Fluoroquinolones in Human Urine Samples. Talanta 2004, 62, 853–860. DOI: 10.1016/j.talanta.2003.10.037.
  • Zhang, Z.; Zhang, M.; Wu, X-y.; Chang, Z.; Lee, Y.-I.; Huy, B. T.; Sakthivel, K.; Liu, J-f.; Jiang, G-b. Upconversion Fluorescence Resonance Energy Transfer—A Novel Approach for Sensitive Detection of Fluoroquinolones in Water Samples. Microchem. J. 2016, 124, 181–187. DOI: 10.1016/j.microc.2015.08.024.
  • Kalunke, R. M.; Grasso, G.; D'Ovidio, R.; Dragone, R.; Frazzoli, C. Detection of Ciprofloxacin Residues in Cow Milk: A Novel and Rapid Optical β-Galactosidase-Based Screening Assay. Microchem. J. 2018, 136, 128–132. DOI: 10.1016/j.microc.2016.12.014.
  • Samanidou, V.; Evaggelopoulou, E.; Trötzmüller, M.; Guo, X.; Lankmayr, E. Multi-Residue Determination of Seven Quinolones Antibiotics in Gilthead Seabream Using Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2008, 1203, 115–123. DOI: 10.1016/j.chroma.2008.07.003.
  • Rodriguez, E.; Moreno-Bondi, M.; Marazuela, M. Development and Validation of a Solid-Phase Extraction Method Coupled to Liquid Chromatography with Fluorescence Detection for the Determination of Fluoroquinolone Residues in Powdered Infant Formulae: Application to the Analysis of Samples from the Spanish and Latin American Market. J. Chromatogr. A 2008, 1209, 136–144. DOI: 10.1016/j.chroma.2008.09.031.
  • Pellegrino, R. M.; Segoloni, F.; Cagini, C. Simultaneous Determination of Ciprofloxacin and the Active Metabolite of Prulifloxacin in Aqueous Human Humor by High-Performance Liquid Chromatography. J. Pharm. Biomed. Anal. 2008, 47, 567–574. DOI: 10.1016/j.jpba.2008.01.043.
  • Krebber, R.; Hoffend, F.-J.; Ruttmann, F. Simple and Rapid Determination of Enrofloxacin and Ciprofloxacin in Edible Tissues by Turbulent Flow Chromatography/Tandem Mass Spectrometry (TFC–MS/MS). Anal. Chim. Acta 2009, 637, 208–213. DOI: 10.1016/j.aca.2008.11.006.
  • Zhao, H. C.; Ding, F.; Wang, X.; Ju, H.; Li, A.; Jin, L. P. A Study on Silver Nanoparticles-Sensitized Fluorescence and Second-Order Scattering of the Complexes of Tb (III) with Ciprofloxacin and Its Applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 70, 332–336. DOI: 10.1016/j.saa.2007.09.002.
  • Hermo, M.; Nemutlu, E.; Kır, S.; Barrón, D.; Barbosa, J. Improved Determination of Quinolones in Milk at Their MRL Levels Using LC–UV, LC–FD, LC–MS and LC–MS/MS and Validation in Line with Regulation 2002/657/EC. Anal. Chim. Acta 2008, 613, 98–107. DOI: 10.1016/j.aca.2008.02.045.
  • Čurman, D.; Živec, P.; Leban, I.; Turel, I.; Polishchuk, A.; Klika, K. D.; Karaseva, E.; Karasev, V. Spectral Properties of Eu (III) Compound with Antibacterial Agent Ciprofloxacin (cfqH). Crystal Structure of [Eu(cfqH)(Cfq)(H2O)4]Cl2 4.55H2O. Polyhedron 2008, 27, 1489–1496. DOI: 10.1016/j.poly.2008.01.014.
  • Li, W.-Y.; Chen, X.-F.; Xuan, C.-S. Study of Fluorescence Characteristics of the Charge-Transfer Reaction of Quinolone Agents with Bromanil. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 71, 1769–1775. DOI: 10.1016/j.saa.2008.06.045.
  • Huang, X.; Liu, Q.; Yao, S.; Jiang, G. Recent Progress in the Application of Nanomaterials in the Analysis of Emerging Chemical Contaminants. Anal. Methods 2017, 9, 2768–2783. DOI: 10.1039/C7AY00859G.
  • Bagheri, H.; Khoshsafar, H.; Amidi, S.; Ardakani, Y. H. Fabrication of an Electrochemical Sensor Based on Magnetic Multi-Walled Carbon Nanotubes for the Determination of Ciprofloxacin. Anal. Methods 2016, 8, 3383–3390. DOI: 10.1039/C5AY03410H.
  • Garbellini, G. S.; Rocha-Filho, R. C.; Fatibello-Filho, O. Voltammetric Determination of Ciprofloxacin in Urine Samples and Its Interaction with ds DNA on a Cathodically Pretreated Boron-Doped Diamond Electrode. Anal. Methods 2015, 7, 3411–3418. DOI: 10.1039/C5AY00625B.
  • Zhang, B.; Zhao, J.; Sha, B.; Xian, M. Selective Solid-Phase Extraction Using Molecularly Imprinted Polymers for the Analysis of Norfloxacin in Fish. Anal. Methods 2012, 4, 3187–3192. DOI: 10.1039/c2ay25707f.
  • Kamel, A. H.; Mahmoud, W. H.; Mostafa, M. S. Biomimetic Ciprofloxacin Sensors Made of Molecularly Imprinted Network Receptors for Potential Measurements. Anal. Methods 2011, 3, 957–964. DOI: 10.1039/c0ay00706d.
  • Pham, T. S. H.; Mahon, P. J.; Lai, G.; Yu, A. Reduced Graphene Oxide Nanocomposite Modified Electrodes for Sensitive Detection of Ciprofloxacin. Electroanalysis 2018, 30, 2185–2194. DOI: 10.1002/elan.201700738.
  • Jeong, S. H.; Kim, K. K.; Jeong, S. J.; An, K. H.; Lee, S. H.; Lee, Y. H. Optical Absorption Spectroscopy for Determining Carbon Nanotube Concentration in Solution. Synth. Metals 2007, 157, 570–574. DOI: 10.1016/j.synthmet.2007.06.012.
  • Hu, S.-L.; Niu, K.-Y.; Sun, J.; Yang, J.; Zhao, N.-Q.; Du, X.-W. One-Step Synthesis of Fluorescent Carbon Nanoparticles by Laser Irradiation. J. Mater. Chem. 2009, 19, 484–488. DOI: 10.1039/B812943F.
  • Castro, H. P.; Pereira, M. K.; Ferreira, V. C.; Hickmann, J. M.; Correia, R. R. Optical Characterization of Carbon Quantum Dots in Colloidal Suspensions. Opt. Mater. Express 2017, 7, 401–408. DOI: 10.1364/OME.7.000401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.