Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 7
214
Views
6
CrossRef citations to date
0
Altmetric
Articles

An approach to assess and identify polymers in the health-care waste of a Brazilian university hospital

, , &
Pages 800-819 | Received 09 Jan 2020, Accepted 12 Mar 2020, Published online: 02 Apr 2020

References

  • WHO. Safe Management of Wastes from Health-Care Activities; WHO Library Cataloguing-in-Publication Data: World Health Organization: Geneva, Switzerland, 2014; p. 308.
  • Gold, K. Analysis: The Impact of Needle, Syringe, and Lancet Disposal on the Community. J. Diabetes Sci. Technol. 2011, 5, 848–850. DOI: 10.1177/193229681100500404.
  • Lee, B. K.; Ellenbecker, M. J.; Moure-Eraso, R. Analyses of the Recycling Potential of Medical Plastic Wastes. Waste Manag. 2002, 22, 461–470. DOI: 10.1016/S0956-053X(02)00006-5.
  • ABRELPE. Overview of Solid Waste in Brazil: 2017. Brazilian Association of Public Cleaning Companies and Special Waste; 2018.
  • ANVISA. National Health Surveillance Agency. Resolution No. 222, March 2018. (Regulates the good practices of Healthcare waste and gives other arrangements). http://portal.anvisa.gov.br/documents/10181/3427425/RDC_222_2018_.pdf/c5d3081d-b331-4626-8448-c9aa426ec41.2018.
  • CONAMA. National Environmental Council. Resolution No. 358, April 2005. (Adopts provisions concerning treatment and disposal of waste of healthcare services), 614–621. <http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=462>. (accessed August 2018).
  • Chen, Y.; Ding, Q.; Yang, X.; Peng, Z.; Xu, D.; Feng, Q. Application Countermeasures of Non-Incineration Technologies for Medical Waste Treatment in China. Waste Manag. Res. 2013, 31, 1237–1244. DOI: 10.1177/0734242X13507314.
  • Glasser, H.; Chang, D. P. Y.; Hickman, D. C. An Analysis of Biomedical Waste Incineration. J. Air 2012, 41, 1180–1188. DOI: 10.1080/10473289.1991.10466913.
  • Qi, Y.; He, J.; Li, Y.; Yu, X.; Xiu, F. R.; Deng, Y.; Gao, X. A Novel Treatment Method of PVC-Medical Waste by near-Critical Methanol: Dechlorination and Additives Recovery. Waste Manag. 2018, 80, 1–9. DOI: 10.1016/j.wasman.2018.08.052.
  • Bezuidenhout, D. In Health Care without Harm – A Case for the Recovery and Recycling of PVC Waste from the Health Care Environment. Proceedings of the 20th WasteCon Conference, South Africa, 2014.
  • McGain, F.; Clark, M.; Williams, T.; Wardlaw, T. Recycling Plastics from the Operating Suite. Anaesth. Intensive Care 2008, 36, 913–914.
  • BD; Healthcare Solutions. BD ecoFinity ® Life Cycle Solution Environmental Life Cycle Analysis (LCA). BD and WM Healthcare Solutions: New York, 2011.
  • Huang, W. C.; Huang, M. S.; Huang, C. F.; Chen, C. C.; Ou, K. L. Thermochemical Conversion of Polymer Wastes into Hydrocarbon Fuels over Various Fluidizing Cracking Catalysts. Fuel 2010, 89, 2305–2316. DOI: 10.1016/j.fuel.2010.04.013.
  • Cecconello, A. L. Disposition introduced in polymer fusion reactor. BR 202016001460-9 U2, 2016.
  • Dash, A. Study on the Thermal Pyrolysis of Medical Waste (Plastic Syringe) for the Production of Useful Liquid Fuels. 2012.
  • Xinlei, W.; Qi’an, Z.; Dong, K.; Jun, G. Integral Type Medical Waste Recovery System is Smelted in Pyrolysis. CN20162349357U 20160422, 2016.
  • Dong, L. Cracking and Oil Refining Equipment for Medical Waste. CN20142551348U 20140924. 2015.
  • Bujak, J. Experimental Study of the Lower Heating Value of Medical Waste. Polish J. Environ. Stud. 2010, 19, 1151–1158.
  • Hamoda, H. M.; El-Tomi, H. N.; Bahman, Q. Y. Variations in Hospital Waste Quantities and Generation Rates. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 2005, 40, 467–476. DOI: 10.1081/ESE-200045650.
  • Caniato, M.; Tudor, T.; Vaccari, M. International Governance Structures for Health-Care Waste Management: A Systematic Review of Scientific Literature. J. Environ. Manage 2015, 153, 93–107. DOI: 10.1016/j.jenvman.2015.01.039.
  • Gondal, M. A.; Siddiqui, M. N. Identification of Different Kinds of Plastics Using Laser-Induced Breakdown Spectroscopy for Waste Management. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 2007, 42, 1989–1997. DOI: 10.1080/10934520701628973.
  • Grigorescu, R. M.; Grigore, M. E.; Iancu, L.; Ghioca, P.; Ion, R. M. Waste Electrical and Electronic Equipment: A Review on the Identification Methods for Polymeric Materials. Recycling 2019, 4, 21. DOI: 10.3390/recycling4030032.
  • Dash, A.; Kumar, S.; Singh, R. K. Thermolysis of Medical Waste (Waste Syringe) to Liquid Fuel Using Semi Batch Reactor. Waste Biomass Valorization 2015, 6, 507–514. DOI: 10.1007/s12649-015-9382-3.
  • Deng, N.; Wang, W. W.; Cui, W. Q.; Zhang, Y. F.; Ma, H. T. Thermogravimetric Characteristics and Different Kinetic Models for Medical Waste Composition Containing Polyvinyl Chloride-Transfusion Tube. J. Cent. South Univ. 2014, 21, 1034–1043. DOI: 10.1007/s11771-014-2034-0.
  • Qin, L.; Han, J.; Zhao, B.; Wang, Y.; Chen, W.; Xing, F. Thermal Degradation of Medical Plastic Waste by in-Situ FTIR, TG-MS and TG-GC/MS Coupled Analyses. J. Anal. Appl. Pyrolysis 2018, 136, 132–145. DOI: 10.1016/j.jaap.2018.10.012.
  • Deng, N.; Zhang, Y. f.; Wang, Y. Thermogravimetric Analysis and Kinetic Study on Pyrolysis of Representative Medical Waste Composition. Waste Manag. 2008, 28, 1572–1580. DOI: 10.1016/j.wasman.2007.05.024.
  • Som, U.; Rahman, F.; Hossain, S. Recovery of Pyrolytic Oil from Thermal Pyrolysis of Medical Waste. J. Eng. Sci. 2018, 5, H5–H8. DOI: 10.21272/jes.2018.5(2).h2.
  • FBH; CNSaúde. Scenarios of hospitals in Brazil. http://cnsaude.org.br/wp-content/uploads/2019/05/CenarioDosHospitaisNoBrasil2019CNSaudeFBH.pdf. (accessed Sep. 2019).
  • EBSERH. About the Federal university Hospitals. https://www.ebserh.gov.br/hospitais-universitarios-federais. (accessed Sep. 2019).
  • HUSM. Waste Management Plan of Health Care Waste. Hospital Universitário de Santa Maria - Unpuplished Result: Santa Maria, Brazil, 2017; 51. pp.
  • Moreira, A. M. M.; Günther, W. M. R. Assessment of Medical Waste Management at a Primary Health-Care Center in São Paulo, Brazil. Waste Manag. 2013, 33, 162–167.
  • Achilias, D. S.; Kanellopoulou, I.; Megalokonomos, P.; Antonakou, E.; Lappas, A. A. Chemical Recycling of Polystyrene by Pyrolysis: Potential Use of the Liquid Product for the Reproduction of Polymer. Macromol. Mater. Eng. 2007, 292, 923–934. DOI: 10.1002/mame.200700058.
  • Baeta, D. A.; Zattera, J. A.; Oliveira, M. G.; Oliveira, P. J. The Use of Styrene-Butadiene Rubber Waste as a Potential Filler in Nitrile Rubber: order of Addition and Size of Waste Particles. Brazilian J. Chem. Eng. 2009, 26, 23–31. DOI: 10.1590/S0104-66322009000100003.
  • Jung, M. R.; Horgen, F. D.; Orski, S. V.; Rodriguez C, V.; Beers, K. L.; Balazs, G. H.; Jones, T. T.; Work, T. M.; Brignac, K. C.; Royer, S.-J.; et al. Validation of ATR FT-IR to Identify Polymers of Plastic Marine Debris, Including Those Ingested by Marine Organisms. Mar. Pollut. Bull. 2018, 127, 704–716. DOI: 10.1016/j.marpolbul.2017.12.061.
  • Scheirs, J.; Kaminsky, W. Feedstock Recycling and Pyrolysis of Waste Plastics: Converting Waste Plastics into Diesel and Other Fuels. John Wiley & Sons: UK, 2006; 785 pp.
  • Suresh, S. S.; Mohanty, S.; Nayak, S. K. Composition Analysis and Characterization of Waste Polyvinyl Chloride (PVC) Recovered from Data Cables. Waste Manag. 2017, 60, 100–111.
  • Taoutaou, A.; Socaciu, C.; Pamfil, D.; Fetea, F.; Balazs, E.; Botez, C. New Markers for Potato Late Blight Resistance and Susceptibility Using FTIR Spectroscopy. Not. Bot. Horti. Agrobot. Cluj-Napoca 2012, 40, 150–154. DOI: 10.15835/nbha4016647.
  • Gulmine, J. V.; Janissek, P. R.; Heise, H. M.; Akcelrud, L. Polyethylene Characterization by FTIR. Polym. Test 2002, 21, 557–563. DOI: 10.1016/S0142-9418(01)00124-6.
  • Martienssen, W.; Warlimont, H. Springer Handbook of Condensed Matter and Materials Data; Springer: Germany, 2005.
  • Râpa, M.; Matei, E.; Ghioca, P. N.; Cincu, C.; Niculescu, M. Structural Changes of Modified Polypropylene with Thermoplastic Elastomers for Medical Devices Applications. J. Adhes. Sci. Technol. 2016, 30, 1727–1740. DOI: 10.1080/01694243.2015.1132103.
  • ABNT Brazilian Technical Standards Association. NBR 13230. (Packaging and Packaging Recyclable Plastics - Identification and Symbology); 2008, 8.
  • Silverstein, R. M.; Webster, F. X.; Kiemle, D. J. Spectrometric Identification of Organic Compounds. John Wiley & Sons: USA, 2005.
  • Ehsani, M.; Borsi, H.; Gockenbach, E.; Bakhshandeh, G. R.; Morshedian, J. Modified Silicone Rubber for Use as High Voltage Outdoor Insulators. Adv. Polym. Technol. 2005, 24, 51–61. DOI: 10.1002/adv.20027.
  • Grzabka-Zasadzinska, A.; Amietszajew, T.; Borysiak, S. Thermal and Mechanical Properties of Chitosan Nanocomposites with Cellulose Modified in Ionic Liquids. J. Therm. Anal. Calorim. 2017, 130, 143–154. DOI: 10.1007/s10973-017-6295-3.
  • Bozaci, E.; Arik, B.; Demir, A.; Özdogan, E. Potential Use of New Methods for Identification of Hollow Polyester Fibres. Tekst. ve Konfeksiyon 2012, 4, 317–323.
  • Zhang, W.; Yi, X.; Sun, X.; Zhang, Y. Surface Modification of Non-Woven Poly (Ethylene Terephthalate) Fibrous Scaffold for Improving Cell Attachment in Animal Cell Culture. J. Chem. Technol. Biotechnol. 2008, 83, 904–911.
  • Asensio, R. C.; Moya, M. S. A.; Roja, J. M. d l.; Gómez, M. Analytical Characterization of Polymers Used in Conservation and Restoration by ATR-FTIR Spectroscopy. Anal Bioanal Chem. 2009, 395, 2081–2096. DOI: 10.1007/s00216-009-3201-2.
  • Peydro, M. A.; Juarez, D.; Sanhez-Caballero, S.; Parres, F. Study of the Thermal Properties of Acrylonitrile Butadiene Styrene – High Impact Polystyrene Blends with Styrene Ethylene Butylene Styrene. Ann. Oradea Univ. 2013, 1, 273–276.
  • Karahaliou, E. K.; Tarantili, P. A. Stability of ABS Compounds Subjected to Repeated Cycles of Extrusion Processing. Polym. Eng. Sci. 2009, 49, 2269–2275. DOI: 10.1002/pen.21480.
  • Asefnejad, A.; Khorasani, M. T.; Behnamghader, A.; Farsadzadeh, B.; Bonakdar, S. Manufacturing of Biodegradable Polyurethane Scaffolds Based on Polycaprolactone Using a Phase Separation Method: physical Properties and in Vitro Assay. Int. J. Nanomedicine 2011, 6, 2375–2384.
  • Lu, F.; Song, B.; He, P.; Wang, Z.; Wang, J. Electrochemical Impedance Spectroscopy (EIS) Study on the Degradation of Acrylic Polyurethane Coatings. RSC Adv. 2017, 7, 13742–13748. DOI: 10.1039/C6RA26341K.
  • Ramesh, A.; Sivaramanarayanan, K. An Overview of the Plastic Material Selection Process for Medical Devices. 2013.
  • Navarro, R.; Torre, L.; Kenny, J. M.; Jiménez, A. Thermal Degradation of Recycled Polypropylene Toughened with Elastomers. Polym. Degrad. Stab. 2003, 82, 279–290. DOI: 10.1016/S0141-3910(03)00222-2.
  • Tsiamis, D.; Castaldi, M. Determining Accurate Heating Values of Non-Recycled Plastics (NRP); City Univ: New York; 2016, pp. 1–27.
  • UNEP. Converting Waste Plastics into a Resource Compendium of Technologies. United Nations Environ. Program 2009, 1, 1–51.
  • Lerici, L. C.; Renzini, M. S.; Pierella, L. B. Chemical Catalyzed Recycling of Polymers: Catalytic Conversion of PE, PP and PS into Fuels and Chemicals over H-Y. Procedia Mater. Sci. 2015, 8, 297–303. DOI: 10.1016/j.mspro.2015.04.076.
  • Sastri, V. Commodity Thermoplastics: Polyvinyl Chloride, Polyolefins, and Polystyrene. In Plastics in Medical Devices; Elsevier Inc.: United States, 2010; pp. 73–119.
  • Chaukura, N.; Gwenzi, W.; Bunhu, T.; Ruziwa, D. T.; Pumure, I. Potential Uses and Value-Added Products Derived from Waste Polystyrene in Developing Countries: A Review. Resour. Conserv. Recycl. 2016, 107, 157–165. DOI: 10.1016/j.resconrec.2015.10.031.
  • Shen, L.; Patel, M. K. Life Cycle Assessment of Polysaccharide Materials: A Review. J. Polym. Environ. 2008, 16, 154–167. DOI: 10.1007/s10924-008-0092-9.
  • Sastri, V. Engineering Thermoplastics: Acrylics, Polycarbonates, Polyurethanes, Polyacetals, Polyesters, and Polyamides. In Plastics in Medical Devices; Elsevier Inc.: United States, 2010; pp. 121–173.
  • Almeida, D.; Marque, M.; de, F. Thermal and Catalytic Pyrolysis of Polyethylene Plastic Waste in Semi. Polimeros 2015, 26, 1–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.