Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 7
323
Views
16
CrossRef citations to date
0
Altmetric
Articles

Co-biodegradation studies of naphthalene and phenanthrene using bacterial consortium

ORCID Icon &
Pages 912-924 | Received 04 Sep 2019, Accepted 03 Apr 2020, Published online: 13 May 2020

References

  • Obinna, N.; Oluseyi, A.; Olukayode, A. Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas. Brazilian Journal of Microbiology. 2016. 47(3), 551–562.
  • Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Lokeshkumar, B.; Rajendran, P.; Nishigaki, I., Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pacific Journal of Tropical Biomedicine. 2015. 5(3), pp.182–189.
  • Abdel-Shafy, H. I.; Mansour, M. S. A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Im‐ pact, Effect on Human Health and Remediation. Egypt. J. Pet. 2016, 25, 107–123. DOI: 10.1016/j.ejpe.2015.03.011.
  • Schulze, E. Guidelines for Drinking-Water Quality. Vol. 2. Health Criteria and Other Supporting Information. 335 Seiten. World Health Organization, Geneva 1984. Preis: 35.– Sw. fr. Nahrung 1986, 30, 80–80. DOI: 10.1002/food.19860300121.
  • Moody, J. D.; Freeman, J. P.; Doerge, D. R.; Cerniglia, C. E. Degradation of Phenanthrene and Anthracene by Cell Suspensions of Mycobacterium Sp. Strain PYR-1. Appl. Environ. Microbiol. 2001, 67, 1476–1483. DOI: 10.1128/AEM.67.4.1476-1483.2001.
  • Vaidya, S.; Devpura, N.; Jain, K.; Madamwar, D. Degradation of Chrysene by Enriched Bacterial Consortium. Front. Microbiol. 2018. 9, 1333. DOI: 10.3389/fmicb.2018.01333.
  • Broderick, J. B. Catechol Dioxygenases. Essays in Biochemistry 1999, 34, 173–189. DOI: 10.1042/bse0340173.
  • Qin, W.; Fan, F.; Zhu, Y.; Huang, X.; Ding, A.; Liu, X.; Dou, J. Anaerobic Biodegradation of Benzo(a)Pyrene by a Novel Cellulosimicrobium Cellulans CWS2 Isolated from Polycyclic Aromatic Hydrocarbon-Contaminated Soil. Brazilian Journal of Microbiology 2018, 49, 258–268. DOI: 10.1016/j.bjm.2017.04.014.
  • Kimtrele, M.W.; William, E.M.; Justin, S.; Baraka, S.W.; Bianca, L.G. Production of Protocatechuic Acid in Ba‐ cillus thuringiensis ATCC 33679. International Journal of Molecular Sciences. 2012. 13, 3765–3772. DOI: 10.3390/ijms13033765.
  • Ghosal, D.; Chakraborty, J.; Khara, P.; Dutta, T. K. Degradation of Phenanthrene via Meta-Cleavage of 2-Hy‐ droxy-1-Naphthoic Acid by Ochrobactrum Sp. strain PWTJD. FEMS Microbiology Letters 2010, 313, 103–110. DOI: 10.1111/j.1574-6968.2010.02129.x.
  • Mitra, A.; Mukhopadhyay, S. Biofilm Mediated Decontamination of Pollutants from the Environment. AIMS Bi‐ oengineering 2016, 3, 44–59. DOI: 10.3934/bioeng.2016.1.44.
  • Patowary, K.; Patowary, R.; Kalita, M.; Deka, S. Development of an Efficient Bacterial Consortium for the Po‐ tential Remediation of Hydrocarbons from Contaminated Sites. Frontiers in Microbiology. 2016. 7, 1–14 DOI: 10.3389/fmicb.2016.01092.
  • Shukla, S.K.; Mangwani, N.; Rao, T.S.; Das, S. Biofilm-Mediated Bioremediation of Polycyclic Aromatic Hy‐ drocarbons. Microbial Biodegradation and Bioremediation. 2014. 18, 203–232.
  • Moscoso, F.; Teijiz, I.; Deive, F. J.; Sanromán, M. A. Efficient Pahs Biodegradation by a Bacterial Consortium at Flask and Bioreactor Scale. Bioresour. Technol. 2012, 119, 270–276. DOI: 10.1016/j.biortech.2012.05.095.
  • Nandakumar, V.; Chittaranjan, S.; Kurian, V. M.; Doble, M. Characteristics of Bacterial Biofilm Associated with Implant Material in Clinical Practice. Polym. J. 2013, 45, 137–152. DOI: 10.1038/pj.2012.130.
  • Lyu, Y.; Zheng, W.; Zheng, T.; Tian, Y. Biodegradation of Polycyclic Aromatic Hydrocarbons by Novosphin‐ gobium pentaromativorans US6-1. PLOS ONE, 2014. 9(7), 1–8. DOI: 10.1371/journal.pone.0101438.
  • Okai, M.; Kihara, I.; Yokoyama, Y.; Ishida, M.; Urano, N. Isolation and characterization of benzo[a]pyrene-de‐ grading bacteria from the Tokyo Bay area and Tama River in Japan. FEMS Microbiology Letters. 2015. 362, 1–7. DOI: 10.1093/femsle/fnv143.
  • Kiyohara, H.; Nagao, K.; Yana, K. Rapid Screen for Bacteria Degrading Water-Insoluble, Solid Hydrocarbons on Agar Plates. Applied and Environmental Microbiology 1982, 43, 454–457. DOI: 10.1128/AEM.43.2.454-457.1982.
  • Kwasny, S.M.; Opperman, T.J. Static biofilm cultures of Gram-positive pathogens grown in a microtiter format used for anti-biofilm drug discovery. Current Protocols in Pharmacology. 2010. 50(1), 1–23. DOI: 10.1002/0471141755.ph13a08s50.
  • Dasgupta, D.; Ghosh, R.; Sengupta, T. K. Biofilm-Mediated Enhanced Crude Oil Degradation by Newly Isolated Pseudomonas Species. ISRN Biotechnology 2013, 2013, 1–13. DOI: 10.5402/2013/250749.
  • Danhorn, T.; Hentzer, M.; Givskov, M.; Parsek, M. R.; Fuqua, C. Phosphorus Limitation Enhances Biofilm For‐ mation of the Plant Pathogen Agrobacterium Tumefaciens through the Phor-Phob Regulatory System. JB. 2004, 186, 4492–4501. DOI: 10.1128/JB.186.14.4492-4501.2004.
  • Merritt, J.H.; Kadouri, D.E.; O’toole, G.A. Growing and Analyzing Static Biofilms. Current Protocols in Micro‐ biology. 2011. 22(1), 1–18
  • O’toole, G.A. Microtiter Dish Biofilm Formation Assay. Journal of Visualized Experiments. 2011. 47, 1–2. DOI: 10.3791/2437.
  • Fung Pui, C.; Apun, K.; Jalan, J.; Maurice Bi, L.; Sùut, L.; Fatma Hash, H. Microtitre Plate Assay for the Quanti‐ fication of Biofilm Formation by Pathogenic Leptospira. Research J. of Microbiology 2017, 12, 146–153. DOI: 10.3923/jm.2017.146.153.
  • Arnow, L.E. Colorimetric determination of the components of 3, 4-dihydroxyphenylalanine tyrosine mixtures. Journal of Biological Chemistry. 1937. 118, 531–537
  • Pawar, A.; Ugale, S.; More, M.; Kokani, N.; Khandelwal, S. Biological Degradation of Naphthalene: A New Era. Journal of Bioremediation and Biodegradation. 2013. 4(7):1–5.
  • Teng, Y.; Luo, Y.; Ping, L.; Zou, D.; Li, Z.; Christie, P. Effects of Soil Amendment with Different Carbon Sources and Other Factors on the Bioremediation of an Aged PAH-Contaminated Soil. Biodegradation. 2010, 21, 167–178. DOI: 10.1007/s10532-009-9291-x.
  • Nicolella, C. Wastewater Treatment with Particulate Biofilm Reactors. Journal of Biotechnology 2000, 80, 1–33. DOI: 10.1016/S0168-1656(00)00229-7.
  • Parab, V.; Phadke, M. Study of Mixed Polycyclic Aromatic Hydrocarbon Degradation by Bacteria Isolated from Hydrocarbon Contaminated Sites. IOSR JESTFT. 2017, 11, 32–41. DOI: 10.9790/2402-1103023241.
  • Silva, A. S.; Camargo, F. A. d O; Andreazza, R; Jacques, R. J. S; Baldoni, D. B.; Bento, F. M. Enzymatic Activity of Catechol 1,2-Dioxygenase and Catechol 2,3-Dioxygenase Produced by Gordonia Polyisoprenivorans. Quím. Nova 2012, 35, 1587–1592. DOI: 10.1590/S0100-40422012000800018.
  • Franklin, F. C.; Bagdasarian, M.; Bagdasarian, M. M.; Timmis, K. N. Molecular and Functional Analysis of the TOL Plasmid Pwwo from Pseudomonas Putida and Cloning of Genes for the Entire Regulated Aromatic Ring Meta Cleavage Pathway. Proceedings of the National Academy of Sciences 1981, 78, 7458–7462. DOI: 10.1073/pnas.78.12.7458.
  • Al-Awadhi, H.; Al-Hasan, R. H.; Sorkhoh, N. A.; Salamah, S.; Radwan, S. S. Establishing Oil-Degrading Biofilms on Gravel Particles and Glass Plates. Int. Biodeterior. Biodegrad. 2003, 51, 181–185. DOI: 10.1016/S0964-8305(02)00140-3.
  • Hesham, A.E.; Alamri, S.A.; Khan, S.; Mahmoud, M.E.; Mahmoud, H.M. Isolation and molecular genetic char‐ acterization of a yeast strain able to degrade petroleum polycyclic aromatic hydrocarbons. African Journal of Bio‐ technology. 2009, 8(10)
  • Sadighbayan, K.; Assadi, M. M.; Farazmand, A.; Monadi, A. R.; Aliasgharzad, N. Biodegradation of Naphtha‐ lene, Phenanthrene and Anthracene (Pahs) with Bacteria in the Oily Soil of Tabriz. Biosci. Biotech. Res. Comm. 2016, 9, 399–405. DOI: 10.21786/bbrc/9.3/9.
  • Janbandhu, A.; Fulekar, M. H. Biodegradation of Phenanthrene Using Adapted Microbial Consortium Isolated from Petrochemical Contaminated Environment. J. Hazard. Mater. 2011, 187, 333–340. mat.2011.01.034 DOI: 10.1016/j.jhaz-.
  • Jiang, Y.; Huang, H.; Wu, M.; Yu, X.; Chen, Y.; Liu, P.; Li, X. Pseudomonas Sp. LZ-Q Continuously Degrades Phenanthrene under Hypersaline and Hyperalkaline Condition in a Membrane Bioreactor System. Biophys. Rep. 2015, 1, 156–167. DOI: 10.1007/s41048-016-0018-3.
  • Mnif, S.; Chebbi, A.; Mhiri, N.; Sayadi, S.; Chamkha, M. Biodegradation of Phenanthrene by a Bacterial Con‐ sortium Enriched from Sercina Oilfield. Process Safety and Environmental Protection 2017, 107, 44–53. DOI: 10.1016/j.psep.2017.01.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.