Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 10
236
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Photocatalytic degradation of marine diesel oil spills using composite CuO/ZrO2 under visible light

, ORCID Icon, , , , & show all
Pages 1257-1265 | Received 18 Apr 2020, Accepted 02 Jun 2020, Published online: 12 Jun 2020

References

  • Maithufi, M. N.; Joubert, D. J.; Klumperman, B. Application of Gemini Surfactants as Diesel Fuel Wax Dispersants. Energy Fuels 2011, 25, 162–171. DOI: 10.1021/ef1006287.
  • Rodríguez-Blanco, A.; Antoine, V.; Pelletier, E.; Delille, D.; Ghiglione, J.-F. Effects of Temperature and Fertilization on Total vs. active Bacterial Communities Exposed to Crude and Diesel Oil Pollution in NW Mediterranean Sea. Environ. Pollut. 2010, 158, 663–673. DOI: 10.1016/j.envpol.2009.10.026.
  • Lanfranconi, M. P.; Bosch, R.; Nogales, B. Short-Term Changes in the Composition of Active Marine Bacterial Assemblages in Response to Diesel Oil Pollution. Microb. Biotechnol. 2010, 3, 607–621. DOI: 10.1111/j.1751-7915.2010.00192.x.
  • Ferraro, G.; Fratini, E.; Rausa, R.; Baglioni, P. Impact of Oil Aging and Composition on the Morphology and Structure of Diesel Soot. J. Colloid Interface Sci. 2018, 512, 291–299. DOI: 10.1016/j.jcis.2017.10.033.
  • Han, J.; Won, E.-J.; Kang, H.-M.; Lee, M.-C.; Jeong, C.-B.; Kim, H.-S.; Hwang, D.-S.; Lee, J.-S. Marine Copepod Cytochrome P450 Genes and Their Applications for Molecular Ecotoxicological Studies in Response to Oil Pollution. Mar. Pollut. Bull. 2017, 124, 953–961. DOI: 10.1016/j.marpolbul.2016.09.048.
  • Wang, G.; Sun, Q.; Zhang, Y.; Fan, J.; Ma, L. Sorption and Regeneration of Magnetic Exfoliated Graphite as a New Sorbent for Oil Pollution. Desalination 2010, 263, 183–188. DOI: 10.1016/j.desal.2010.06.056.
  • Asadi, F.; Phan, C. M.; Obanijesu, E. O. Biodegradation of Diesel Oil in Marine Environment by a Floating Water Droplet. Int. J. Environ. Sci. Technol. 2017, 14, 2323–2330. DOI: 10.1007/s13762-017-1318-y.
  • Qiu, H.; Jiwen, H.; Zhang, R.; Gong, W.; Yu, Y.; Hongwen, G. The Photocatalytic Degradation of Diesel by Solar Light-Driven Floating BiOI/EP Composites. Colloids and Surf., A 2019, 583, 123996. DOI: 10.1016/j.colsurfa.2019.123996.
  • Bagheri, M.; Masoomi, M. Y.; Morsali, A. MoO3-Metal-Organic Framework Composite as Simultaneous Photocatalyst and Catalyst in PODS Process of Light Oil. ACS Catal. 2017, 7, 6949–6956. DOI: 10.1021/acscatal.7b02581.
  • Regmi, C.; Kshetri, Y. K.; Kim, T. H.; Pandey, R. P.; Ray, S. K.; Lee, S. W. Fabrication of Ni-Doped BiVO4 Semiconductors with Enhanced Visible-Light Photocatalytic Performances for Wastewater Treatment. Appl. Surf. Sci. 2017, 413, 253–265. DOI: 10.1016/j.apsusc.2017.04.056.
  • Yang, X.; Wang, D. Photocatalysis: From Fundamental Principles to Materials and Applications. ACS Appl. Energy Mater. 2018, 1, 6657–6693. DOI: 10.1021/acsaem.8b01345.
  • Boukhemikhem, Z.; Brahimi, R.; Rekhila, G.; Fortas, G.; Boudjellal, L.; Trari, M. The Photocatalytic Hydrogen Formation and NO2—Oxidation on the Hetero-Junction Ag/NiFe2O4 Prepared by Chemical Route. Renewable Energy 2020, 145, 2615–2620. DOI: 10.1016/j.renene.2019.08.021.
  • Yu, X.; Ji, Q.; Zhang, J.; Nie, Z.; Yang, H. Photocatalytic Degradation of Diesel Pollutants in Seawater under Visible Light. Reg. Stud. Marine Sci. 2018, 18, 139–144. [Mismatch] DOI: 10.1016/j.rsma.2018.02.006.
  • Bai, X.; Zhang, X.; Hua, Z.; Ma, W.; Dai, Z.; Huang, X.; Gu, H. Uniformly Distributed Anatase TiO2 Nanoparticles on Graphene: Synthesis, Characterization, and Photocatalytic Application. J. Alloys Compd. 2014, 599, 10–18. DOI: 10.1016/j.jallcom.2014.02.049.
  • Leary, R.; Westwood, A. Carbonaceous Nanomaterials for the Enhancement of TiO2 Photocatalysis. Carbon 2011, 49, 741–772. DOI: 10.1016/j.carbon.2010.10.010.
  • Bansal, P.; Chaudhary, G. R.; Mehta, S. K. Comparative Study of Catalytic Activity of ZrO2 Nanoparticles for Sonocatalytic and Photocatalytic Degradation of Cationic and Anionic Dyes. Chem. Eng. J. 2015, 280, 475–485. DOI: 10.1016/j.cej.2015.06.039.
  • Sreethawong, T.; Ngamsinlapasathian, S.; Yoshikawa, S. Synthesis of Crystalline Mesoporous-Assembled ZrO2 Nanoparticles via a Facile Surfactant-Aided Sol–Gel Process and Their Photocatalytic Dye Degradation Activity. Chem. Eng. J. 2013, 228, 256–262. DOI: 10.1016/j.cej.2013.04.111.
  • Rashid, J.; Barakat, M. A.; Mohamed, R. M.; Ibrahim, I. A. Enhancement of Photocatalytic Activity of Zinc/Cobalt Spinel Oxides by Doping with ZrO2 for Visible Light Photocatalytic Degradation of 2-Chlorophenol in Wastewater. J. Photochem. Photobiol., A 2014, 284, 1–7. DOI: 10.1016/j.jphotochem.2014.03.017.
  • HuangWang, Y. G.; Zhang, H.; Li, G.; Fang, D.; Wang, J.; Song, Y. Hydrothermal-Precipitation Preparation of CdS@(Er3+ :Y3 Al5O12/ZrO2) Coated Composite and Sonocatalytic Degradation of Caffeine. Ultrason. Sonochem. 2017, 37, 222–234. DOI: 10.1016/j.ultsonch.2017.01.009.
  • Farhan Hanafi, M.; Sapawe, N. Electrosynthesis of ZrO2 Nanoparticles with Enhanced Removal of Phenolic Compound. Mater. Today 2019, 19, 1529–1532. DOI: 10.1016/j.matpr.2019.11.178.
  • Zhou, Q.; Li, T.; Xu, W.; Zhu, H.; Zheng, Y. Ultrathin Nanosheets-Assembled CuO Flowers for Highly Efficient Electrocatalytic Water Oxidation. J. Mater. Sci. 2018, 53, 8141–8150. DOI: 10.1007/s10853-018-2160-4.
  • Golestanbagh, M.; Parvini, M.; Pendashteh, A. Preparation, Characterization and Photocatalytic Properties of Visible-Light-Driven CuO/SnO2/TiO2Photocatalyst. Catal. Lett. 2018, 148, 2162–2178. DOI: 10.1007/s10562-018-2385-5.
  • Bharathi, P.; Harish, S.; Archana, J.; Navaneethan, M.; Ponnusamy, S.; Muthamizhchelvan, C.; Shimomura, M.; Hayakawa, Y. Enhanced Charge Transfer and Separation of Hierarchical CuO/ZnO Composites: The Synergistic Effect of Photocatalysis for the Mineralization of Organic Pollutant in Water. Appl. Surf. Sci. 2019, 484, 884–891. DOI: 10.1016/j.apsusc.2019.03.131.
  • Yu, L.; Huang, Y.; Xiao, G.; Li, D. Application of Long Wavelength Visible Light (Lambda > 650 nm) in Photocatalysis with a p-CuO-n-In2O3 Quantum Dot Heterojunction Photocatalyst. J. Mater. Chem. A 2013, 1, 9637–9640. DOI: 10.1039/c3ta12207g.
  • Liu, W.; Wang, M.; Xu, C.; Chen, S. Facile Synthesis of g-C3N4/ZnO Composite with Enhanced Visible Light Photooxidation and Photoreduction Properties. Chem. Eng. J. 2012, 209, 386–393. DOI: 10.1016/j.cej.2012.08.033.
  • Chen, Y.; Jin, X. Preparation of Fe3O4@[email protected]·0.04H2O/Ag3PO4 Magnetic Nanocomposite and Its Photocatalytic Performance. Ceramics Internationa 2019, 45, 1283–1292. DOI: 10.1016/j.ceramint.2018.10.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.