Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 10
224
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Transcriptome analysis of Takifugu obscurus liver in response to acute retene exposure

ORCID Icon, &
Pages 1188-1200 | Received 01 Apr 2020, Accepted 02 Jun 2020, Published online: 19 Jun 2020

References

  • Abdel-Shafy, H. I.; Mansour, M. S. M. A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Egypt. J. Petrol. 2016, 25, 107–123. DOI: 10.1016/j.ejpe.2015.03.011.
  • Tian, K.; Bao, H. Y.; Liu, X. P.; Wu, F. Y. Accumulation and Distribution of PAHs in Winter Wheat from Areas Influenced by Coal Combustion in China. Environ. Sci. Pollut. Res. 2018, 25, 23780–23790. DOI: 10.1007/s11356-018-2456-6.
  • Iinuma, Y.; Bruggemann, E.; Gnauk, T.; Muller, K.; Andreae, M. O.; Helas, G.; Parmar, R.; Herrmann, H. Source Characterization of Biomass Burning Particles: The Combustion of Selected European Conifers, African Hardwood, Savanna Grass, and German and Indonesian Peat. J. Geophys. Res. 2007, 112, D08209. DOI: 10.1029/2006JD007120.
  • Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A. Characterization of Particulate Matter Emissions from on-Road Gasoline and Diesel Vehicles Using a Soot Particle Aerosol Mass Spectrometer. Atmos. Chem. Phys. 2014, 14, 7585–7599. DOI: 10.5194/acp-14-7585-2014.
  • Oliva, A. L.; Ovaert, J.; Arias, A. H.; Souissi, S.; Marcovecchio, J. E. Mussels as Bioindicators of PAHs Pollution within Argentinean Coastal Environments, South America. Int. J. Environ. Res. 2015, 9, 1293–1304.
  • Ronda, A. C.; Oliva, A. L.; Arias, A. H.; Orazi, M. M.; Marcovecchio, J. E. Biomarker Responses to Polycyclic Aromatic Hydrocarbons in the Native Fish Ramnogaster Arcuata, South America. Int. J. Environ. Res. 2019, 13, 77–89. DOI: 10.1007/s41742-018-0155-2.
  • Tia, N.; Singh, A. K.; Pandey, P.; Azad, C. S.; Chaudhary, P.; Gambhir, I. S. Role of Forkhead Box O (FOXO) Transcription Factor in Aging and Diseases. Gene 2018, 648, 97–105. DOI: 10.1016/j.gene.2018.01.051.
  • Jarvis, I. W. H.; Dreij, K.; Mattsson, Å.; Jernström, B.; Stenius, U. Interactions between Polycyclic Aromatic Hydrocarbons in Complex Mixtures and Implications for Cancer Risk Assessment. Toxicology 2014, 321, 27–39. DOI: 10.1016/j.tox.2014.03.012.
  • Peixoto, M. S.; da Silva, F. C.; Galvao, M. F. D.; Roubicek, D. A.; Alves, N. D.; Medeiros, S. R. B. Oxidative Stress, Mutagenic Effects, and Cell Death Induced by Retene. Chemosphere 2019, 231, 518–527. DOI: 10.1016/j.chemosphere.2019.05.123.
  • Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd. ed.; John, H. S., Spyros, N. P., Kevin, N., Eds; Wiley: Hoboken, NJ, 2016. DOI: 10.1063/1.882420.
  • Huang, M.; Mesaros, C.; Hackfeld, L. C.; Hodge, R. P.; Zang, T.; Blair, I. A.; Penning, T. M. Potential Metabolic Activation of a Representative C4-Alkylated Polycyclic Aromatic Hydrocarbon Retene (1-Methyl-7-isopropyl-phenanthrene) Associated with the Deepwater Horizon Oil Spill in Human Hepatoma (HepG2) Cells . Chem. Res. Toxicol. 2017, 30, 1093–1101. DOI: 10.1021/acs.chemrestox.6b00457.
  • Muri, G.; Wakeham, S. G.; Faganeli, J. Polycyclic Aromatic Hydrocarbons and Black Carbon in Sediments of a Remote Alpine Lake (Lake Planina, Northwest Slovenia). Environ. Toxicol. Chem. 2003, 22, 1009–1016. DOI: 10.1002/etc.5620220508.
  • Leppänen, H.; Kukkonen, J. V. K.; Oikari, A. O. J. Concentration of Retene and Resin Acids in Sedimenting Particles Collected from a Bleached Kraft Mill Effluent Receiving Lake. Water Res. 2000, 34, 1604–1610. DOI: 10.1016/s0043-1354(99)00313-9.
  • Scott, J. A.; Incardona, J. P.; Pelkki, K.; Shepardson, S.; Hodson, P. V. AhR2-Mediated, CYP1A-Independent Cardiovascular Toxicity in Zebrafish (Danio rerio) Embryos Exposed to Retene. Aquat. Toxicol. 2011, 101, 165–174. DOI: 10.1016/j.aquatox.2010.09.016.
  • Vehniäinen, E. R.; Bremer, K.; Scott, J. A.; Junttila, S.; Laiho, A.; Gyenesei, A.; Hodson, P. V.; Oikari, A. O. J. Retene Causes Multifunctional Transcriptomic Changes in the Heart of Rainbow Trout (Oncorhynchus mykiss) Embryos. Environ. Toxicol. Pharmacol. 2016, 41, 95–102. DOI: 10.1016/j.etap.2015.11.015.
  • de Oliveira Alves, N.; Vessoni, A. T.; Quinet, A.; Fortunato, R. S.; Kajitani, G. S.; Peixoto, M. S.; Hacon, S. d S.; Artaxo, P.; Saldiva, P.; Menck, C. F. M.; Batistuzzo de Medeiros, S. R. Biomass Burning in the Amazon Region Causes DNA Damage and Cell Death in Human Lung Cells. Sci. Rep. 2017, 7, 10937. DOI: 10.1038/s41598-017-11024-3.
  • Li, Q. L.; Wang, N. L.; Barbante, C.; Kang, S. C.; Callegaro, A.; Battistel, D.; Argiriadis, E.; Wan, X.; Yao, P.; Pu, T.; et al. Biomass Burning Source Identification through Molecular Markers in Cryoconites over the Tibetan Plateau. Environ. Pollut. 2019, 244, 209–217. DOI: 10.1016/j.envpol.2018.10.037.
  • Aara, R.; Chowdhary, N.; Saini, D.; Kumar, S. Studies on Hill Stream Fish Photosensitivity with Psoralene and Retene Photosensitizers. JEB 2020, 41, 125–130. DOI: 10.22438/jeb/41/1/MRN-1124.
  • Geier, M. C.; James Minick, D.; Truong, L.; Tilton, S.; Pande, P.; Anderson, K. A.; Teeguardan, J.; Tanguay, R. L. Systematic Developmental Neurotoxicity Assessment of a Representative PAH Superfund Mixture Using Zebrafish. Toxicol. Appl. Pharmacol. 2018, 354, 115–125. DOI: 10.1016/j.taap.2018.03.029.
  • Legler, J.; van Velzen, M.; Cenijn, P. H.; Houtman, C. J.; Lamoree, M. H.; Wegener, J. W. Effect-Directed Analysis of Municipal Landfill Soil Reveals Novel Developmental Toxicants in the Zebrafish Danio rerio. Environ. Sci. Technol. 2011, 45, 8552–8558. DOI: 10.1021/es201099s.
  • Shaw, L. M. The Insulin Receptor Substrate (IRS) Proteins: at the Intersection of Metabolism and Cancer. Cell Cycle 2011, 10, 1750–1756. DOI: 10.4161/cc.10.11.15824.
  • Cheng, C. H.; Ye, C. X.; Guo, Z. X.; Wang, A. L. Immune and Physiological Responses of Pufferfish (Takifugu Obscurus) under Cold Stress. Fish Shellfish Immunol. 2017, 64, 137–145. DOI: 10.1016/j.fsi.2017.03.003.
  • Wang, T.; Wen, X.; Hu, Y.; Zhang, X.; Wang, D.; Yin, S. Copper Nanoparticles Induced Oxidation Stress, Cell Apoptosis and Immune Response in the Liver of Juvenile Takifugu fasciatus. Fish Shellfish Immunol. 2019, 84, 648–655. DOI: 10.1016/j.fsi.2018.10.053.
  • Hwang, S. M.; Oh, K. S. Comparisons of Food Component Characteristics of Wild and Cultured Edible Pufferfishes in Korea. Korean J. Fish Aquat. Sci. 2013, 46, 725–732. DOI: 10.5657/ICFAS.2013.0725..
  • Sainen, S.; Ozawa, K.; Mineki, M.; Noguchi, T. The Sensory Characteristics of Non-Toxic Liver of Pufferfish (Takifugu Rubripes) Cultured at Aquaria on Land by Cooking Methods. Jpn. J. Sens. Eval. 2009, 13, 115–124. DOI: 10.9763/jjsse.13.115.
  • Kato, A.; Doi, H.; Nakada, T.; Sakai, H.; Hirose, S. Takifugu Obscurus is a Euryhaline Fugu Species Very Close to Takifugu Rubripes and Suitable for Studying Osmoregulation. BMC Physiol. 2005, 5, 18S. DOI: 10.1186/1472-6793-5-18.
  • Kim, J. H.; Rhee, J. S.; Lee, J. S.; Dahms, H. U.; Lee, J.; Han, K. N.; Lee, J. S. Effect of Cadmium Exposure on Expression of Antioxidant Gene Transcripts in the River Pufferfish, Takifugu Obscurus (Tetraodontiformes)). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2010, 152, 473–479. DOI: 10.1016/j.cbpc.2010.08.002.
  • Xu, D. P.; Fang, D. A.; Zhao, C. S.; Jiang, S. L.; Hu, H. Y. Effect of Tributyltin Chloride (TBT-Cl) Exposure on Expression of HSP90β1 in the River Pufferfish (Takifugu Obscurus): Evidences for Its Immunologic Function Involving in Exploring Process. Gene 2018, 666, 9–17. DOI: 10.1016/j.gene.2018.04.083.
  • Jiang, S. L.; Yang, J.; Fang, D. A. Histological, Oxidative and Immune Changes in Response to 9,10-Phenanthrenequione, Retene and Phenanthrene in Takifugu Obscurus Liver. J. Environ. Sci. Heal A 2020, 55, 827–836. DOI: 10.1080/10934529.2020.1744998.
  • Bertolotto, R. M.; Ghioni, F.; Frignani, M.; Alvarado-Aguilar, D.; Bellucci, L. G.; Cuneo, C.; Picca, M. R.; Gollo, E. Polycyclic Aromatic Hydrocarbons in Surficial Coastal Sediments of the Ligurian Sea. Ma. Pollut. Bul.l 2003, 46, 907–913. DOI: 10.1016/S0025-326X(03)00114-0.
  • Kim, D.; Geo, P.; Cole, T.; Harold, P.; Ryan, K.; Steven, L. S. TopHat2: accurate Alignment of Transcriptomes in the Presence of Insertions, Deletions and Gene Fusions. Genome Biol. 2013, 14, R36. DOI: 10.1186/gb-2013-14-4-r36.
  • Langmead, B.; Salzberg, S. L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods. 2012, 9, 357–359. DOI: 10.1038/nmeth.1923.
  • Trapnell, C.; Williams, B. A.; Pertea, G.; Mortazavi, A.; Kwan, G.; Baren, M. J.; Salzberg, S. L.; Wold, B. J.; Pachter, L. Transcript Assembly and Quantification by RNA-Seq Reveals Unannotated Transcripts and Isoform Switching during Cell Differentiation. Nat. Biotechnol. 2010, 28, 511–515. DOI: 10.1038/nbt.1621.
  • Anders, S.; Pyl, P. T.; Huber, W. HTSeq-A Python Framework to Work with High-Throughput Sequencing Data. Bioinformatics (Oxford, England) Bioinformatics 2015, 31, 166–169. doi:10.1093/bioinformatics/btu638. 25260700
  • Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. Roy. Stat. Soc. 1995, 57, 289–300. DOI: 10.1111/j.2517-6161.1995.tb02031.x.
  • Luo, W. J.; Brouwer, C. Pathview: An R/Bioconductor Package for Pathway-Based Data Integration and Visualization. Bioinformatics 2013, 29, 1830–1831. DOI: 10.1093/bioinformatics/btt285.
  • Waugh, D. F. Protein-Protein Interactions. Adv. Protein Chem. 1954, 9, 325–437. DOI: 10.1016/S0065-3233(08)60210-7.
  • Livak, K. J.; Schmittgen, T. D. Analysis of Relative Gene Expression Data Using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method . Methods 2001, 25, 402–408. DOI: 10.1006/meth.2001.1262.
  • Wang, Y. D.; Xu, H. F.; Sun, G. R.; Xue, M. M.; Sun, S. J.; Huang, T.; Zhou, J. S.; Loor, J. J.; Li, M. Transcriptome Analysis of the Effects of Fasting Caecotrophy on Hepatic Lipid Metabolism in New Zealand Rabbits. Animals 2019, 9, 648. DOI: 10.3390/ani9090648.
  • Yang, L. Y.; Liu, Z. M.; Ou, K. P.; Wang, T. A.; Li, Z. J.; Tian, Y. D.; Wang, Y. B.; Kang, X. T.; Li, H.; Liu, X. J. Evolution, Dynamic Expression Changes and Regulatory Characteristics of Gene Families Involved in the Glycerophosphate Pathway of Triglyceride Synthesis in Chicken (Gallus gallus). Sci. Rep. 2019, 9, 12735. DOI: 10.1038/s41598-019-48893-9.
  • Ohba, Y.; Sakuragi, T.; Kage-Nakadai, E.; Tomioka, N. H.; Kono, N.; Imae, R.; Inoue, A.; Aoki, J.; Ishihara, N.; Inoue, T.; et al. Mitochondria-type GPAT is required for mitochondrial fusion . EMBO J. 2013, 32, 1265–1279. DOI: 10.1038/emboj.2013.77.
  • Yu, H.; Zhao, Z.; Yu, X.; Li, J.; Lu, C.; Yang, R. Bovine Lipid Metabolism Related Gene GPAM: molecular Characterization, Function Identification, and Association Analysis with Fat Deposition Traits. Gene 2017, 609, 9–18. DOI: 10.1016/j.gene.2017.01.031.
  • Wang, H.; Airola, M. V.; Reue, K. How Lipid Droplets “TAG” along: glycerolipid Synthetic Enzymes and Lipid storage. Biochim Biophys Acta Mol Cell Biol Lipids 2017, 1862, 1131–1145. DOI: 10.1016/j.bbalip.2017.06.010.
  • Misra, N.; Panda, P. K. In Search of Actionable Targets for Agrigenomics and Microalgal Biofuel Production: sequence-Structural Diversity Studies on Algal and Higher Plants with a Focus on GPAT Protein. OMICS 2013, 17, 173–186. DOI: 10.1089/omi.2012.0094.
  • Wang, L.; Zhu, X. P.; Sun, X. Y.; Yang, X. Y.; Chang, X. X.; Xia, M. F.; Lu, Y.; Xia, P.; Yan, H. M.; Bian, H.; Gao, X. FoxO3 Regulates Hepatic Triglyceride Metabolism via Modulation of the Expression of Sterol Regulatory-Element Binding Protein 1c. Lipids Health Dis. 2019, 18, 197DOI: 10.1186/s12944-019-1132-2.
  • Shindou, H.; Hishikawa, D.; Harayama, T.; Yuki, K.; Shimizu, T. Recent Progress on Acyl CoA: lysophospholipid Acyltransferase Research. J. Lipid Res. 2009, 50, S46–S51. DOI: 10.1194/jlr.R800035-JLR200.
  • Lu, B.; Jiang, Y. J.; Zhou, Y. L.; Xu, F. Y.; Hatch, G. M.; Choy, P. C. Cloning and Characterization of Murine 1-Acyl-sn-Glycerol 3-Phosphate Acyltransferases and Their Regulation by PPAR Alpha in Murine Heart. Biochem. J. 2005, 385, 469–477. DOI: 10.1042/BJ20041348.
  • Loos, R. J. F.; Rankinen, T.; Perusse, L.; Tremblay, A.; Despres, J. P.; Bouchard, C. Association of Lipin 1 Gene Polymorphisms with Measures of Energy and Glucose Metabolism. Obesity 2007, 15, 2723–2732. DOI: 10.1038/oby.2007.324.
  • Häkkinen, J.; Vehniäinen, E.; Oikari, A. Histopathological Responses of Newly Hatched Larvae of Whitefish (Coregonus Lavaretus s.l.) to UV-B Induced Toxicity of retene. Aquat. Toxicol. 2003, 63, 159–171. DOI: 10.1016/s0166-445x(02)00173-x.
  • Vanizor Kural, B.; Deger, O.; Erem, C.; Balaban Yucesan, F.; Barlak, Y.; Turan, I.; Aliyazicioglu, R. Sequence Variant in the lpin1 Gene in Patients with Metabolic Syndrome. Turk. J. Bioch. 2013, 38, 280–285. DOI: 10.5505/tjb.2013.41033.
  • Yao-Borengasser, A.; Rasouli, N.; Varma, V.; Miles, L. M.; Phanavanh, B.; Starks, T. N.; Phan, J.; Spencer, H. J.; McGehee, R. E.; Reue, K.; Kern, P. A. Lipin Expression is Attenuated in Adipose Tissue of Insulin-Resistant Human Subjects and Increases with Peroxisome Proliferator-Activated Receptor Gamma Activation. Diabetes 2006, 55, 2811–2818. DOI: 10.2337/db05-1688.
  • Phan, J.; Reue, K. Lipin, a Lipodystrophy and Obesity Gene. Cell Metab. 2005, 1, 73–83. DOI: 10.1016/j.cmet.2004.12.002.
  • Ryu, D.; Seo, W. Y.; Yoon, Y. S.; Kim, Y. N.; Kim, S. S.; Kim, H. J.; Park, T. S.; Choi, C. S.; Koo, S. H. Endoplasmic Reticulum Stress Promotes LIPIN2-Dependent Hepatic Insulin Resistance. Diabetes 2011, 60, 1072–1081. DOI: 10.2337/db10-1046.
  • Yong, H. L.; White, M. F. Insulin Receptor Substrate Proteins and Diabetes. Arch. Pharm. Res. 2004, 27, 361–370. DOI: 10.1007/bf02980074.
  • Escribano, O.; Fernández-Moreno, M. D.; Zueco, J. A.; Menor, C.; Fueyo, J.; Ropero, R. M.; Diaz-Laviada, I.; Román, I. D.; Guijarro, L. G. Insulin Receptor Substrate-4 Signaling in Quiescent Rat Hepatocytes and in Regenerating Rat Liver. Hepatology 2003, 37, 1461–1469. DOI: 10.1053/jhep.2003.50245.
  • Ress, C.; Kaser, S. Mechanisms of Intrahepatic Triglyceride Accumulation. World J. Gastroenterol. 2016, 22, 1664–1673. DOI: 10.3748/wjg.v22.i4.1664.
  • Samuel, V. T.; Shulman, G. I. Mechanisms for Insulin Resistance: common Threads and Missing Links. Cell 2012, 148, 852–871. DOI: 10.1016/j.cell.2012.02.017.
  • Jing, H.; Gao, X.; Xu, L.; Lin, H.; Zhang, Z. H2S Promotes a Glycometabolism Disorder by Disturbing the Th1/Th2 Balance during LPS-Induced Inflammation in the Skeletal Muscles of Chickens. Chemosphere 2019, 222, 124–131. DOI: 10.1016/j.chemosphere.2019.01.136.
  • Teles, M.; Maria, V. L.; Pacheco, M.; Santos, M. A. Anguilla anguilla L. plasma Cortisol, Lactate and Glucose Responses to Abietic Acid, Dehydroabietic Acid and Retene. Environ. Int. 2004, 29, 995–1000. DOI: 10.1016/S0160-4120(03)00093-X.
  • Eijkelenboom, A.; Mokry, M.; de Wit, E.; Smits, L. M.; Polderman, P. E.; van Triest, M. H.; van Boxtel, R.; Schulze, A.; de Laat, W.; Cuppen, E.; Burgering, B. M. T. Genome-Wide Analysis of FOXO3 Mediated Transcription Regulation through RNA Polymerase II Profiling. Mol. Syst. Biol. 2013, 9, 638DOI: 10.1038/msb.2012.74.
  • Amrit, F. R. G.; Steenkiste, E. M.; Ratnappan, R.; Chen, S. W.; McClendon, T. B.; Kostka, D.; Yanowitz, J.; Olsen, C. P.; Ghazi, A. DAF-16 and TCER-1 Facilitate Adaptation to Germline Loss by Restoring Lipid Homeostasis and Repressing Reproductive Physiology in C. elegans. PLoS Genet. 2016, 12, e1005788. DOI: 10.1371/journal.pgen.1005788.
  • Dick, A.; Mayr, T.; Bauer, H.; Meier, A.; Hammerschmidt, M. Cloning and Characterization of Zebrafish smad2, smad3 and smad4. Gene 2000, 246, 69–80. DOI: 10.1016/S0378-1119(00)00056-1.
  • Lagna, G.; Hata, A.; Hemmati-Brivanlou, A.; Massagué, J. Partnership between DPC4 and SMAD Proteins in TGF-beta signalling pathways . Nature 1996, 383, 832–836. DOI: 10.1038/383832a0.
  • Weinstein, M.; Yang, X.; Deng, C. Functions of Mammalian Smad Genes as Revealed by Targeted Gene Disruption in Mice. Cytokine Growth Factor Rev. 2000, 11, 49–58. DOI: 10.1016/S1359-6101(99)00028-3.
  • Muñoz-Espín, D.; Cañamero, M.; Maraver, A.; Gómez-López, G.; Contreras, J.; Murillo-Cuesta, S.; Rodríguez-Baeza, A.; Varela-Nieto, I.; Ruberte, J.; Collado, M.; Serrano, M. Programmed Cell Senescence during Mammalian Embryonic Development. Cell 2013, 155, 1104–1118. DOI: 10.1016/j.cell.2013.10.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.