Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 10
359
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Radiation-induced synthesis of tween 80 stabilized silver nanoparticles for antibacterial applications

ORCID Icon, , , &
Pages 1210-1217 | Received 21 Apr 2020, Accepted 12 Jun 2020, Published online: 02 Jul 2020

References

  • White, R. J.; Luque, R.; Budarin, V. L.; Clark, J. H.; Macquarrie, D. J. Supported Metal Nanoparticles on Porous Materials. Methods and Applications. Chem. Soc. Rev. 2009, 38, 481–494. DOI: 10.1039/B802654H.
  • Zain, N. M.; Stapley, A. G. F.; Shama, G. Green Synthesis of Silver and Copper Nanoparticles Using Ascorbic Acidand Chitosan for Antimicrobial Applications. Carbohydr. Polym. 2014, 112, 195–202. DOI: 10.1016/j.carbpol.2014.05.081.
  • Bajpai, V. K.; Kamle, M.; Shukla, S.; Mahato, D. K.; Chandra, P.; Hwang, S. K.; Kumar, P.; Huh, Y. S.; Han, Y.-K. Prospects of Using Nanotechnology for Food Preservation, Safety, and Security. J. Food Drug Anal. 2018, 26, 1201–1214. DOI: 10.1016/j.jfda.2018.06.011.
  • Rahman, G.; Khan, M.; Khan, Z.; Shah, A. A.; Khan, M. S.; Shah, L. A. Nickel Oxide-Incorporated Polyaniline/Polyvinyl Alcohol Composite for Enhanced Antibacterial Activity. Z. Phys. Chem 2019, 233, 1261–1274. DOI: 10.1515/zpch-2018-1303.
  • Debnath, G.; Das, P.; Saha, A. K. Green Synthesis of Silver Nanoparticles Using Mushroom Extract of Pleurotus Giganteus: Characterization, Antimicrobial, and α-Amylase Inhibitory Activity. Bionanosci. 2019, 9, 611–619. DOI: 10.1007/s12668-019-00650-y.
  • Sintubin, L.; Verstraete, W.; Boon, N. Biologically Produced Nanosilver: Current State and Future Perspectives. Biotechnol. Bioeng. 2012, 109, 2422–2436. DOI: 10.1002/bit.24570.
  • Ajitha, B.; Reddy, Y. A. K.; Reddy, P. S. Enhanced Antimicrobial Activity of Silver Nanoparticles with Controlled Particle Size by pH Variation. Powder Technol. 2015, 269, 110–117. DOI: 10.1016/j.powtec.2014.08.049.
  • Samiei, M.; Farjami, A.; Dizaj, S. M.; Lotfipour, F. Nanoparticles for Antimicrobial Purposes in Endodontics: A Systematic Review of in Vitro Studies. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 58, 1269–1278. DOI: 10.1016/j.msec.2015.08.070.
  • Arvizo, R. R.; Bhattacharyya, S.; Kudgus, R. A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Intrinsic Therapeutic Applications of Noble Metal Nanoparticles: Past, Present and Future. Chem. Soc. Rev. 2012, 41, 2943–2970. DOI: 10.1039/c2cs15355f.
  • Rajkumari, J.; Busi, S.; Vasu, A. C.; Reddy, P. Facile Green Synthesis of Baicalein Fabricated Gold Nanoparticles and Their Antibiofilm Activity against Pseudomonas aeruginosa PAO1. Microb. Pathog. 2017, 107, 261–269. DOI: 10.1016/j.micpath.2017.03.044.
  • Chen, Q.; Shen, X.; Gao, H. Radiolytic Syntheses of Nanoparticles in Supramolecular Assemblies. Adv. Colloid Interface Sci. 2010, 159, 32–44. DOI: 10.1016/j.cis.2010.05.002.
  • Abedini, A.; Daud, A. R.; Abdul Hamid, M. A.; Othman, N. K.; Saion, E. A Review on Radiation-Induced Nucleation and Growth of Colloidal Metallic Nanoparticles. Nanoscale Res. Lett. 2013, 8, 474.
  • Ali, Z. I.; Ghazy, O. A.; Meligi, G.; Saleh, H. H.; Bekhit, M. Copper Nanoparticles: Synthesis, Characterization and Its Application as Catalyst for p-Nitrophenol Reduction. J. Inorg. Organomet. Polym. 2018, 28, 1195–1205. DOI: 10.1007/s10904-018-0780-4.
  • Flores-Rojas, G. G.; López-Saucedo, F.; Bucio, E. Gamma-Irradiation Applied in the Synthesis of Metallic and Organic Nanoparticles: A Short Review. Radiat. Phys. Chem 2020, 169, 107962. DOI: 10.1016/j.radphyschem.2018.08.011.
  • Ghoreishian, S. M.; Kang, S.-M.; Raju, G. S. R.; Norouzi, M.; Jang, S.-C.; Yun, H. J.; Lim, S. T.; Han, Y.-K.; Roh, C.; Huh, Y. S. γ Radiolysis as a Highly Efficient Green Approach to the Synthesis of Metal Nanoclusters: A Review of Mechanisms and Applications. Chem. Eng. J 2019, 360, 1390–1406. DOI: 10.1016/j.cej.2018.10.164.
  • Čubová, K.; Čuba, V. Synthesis of Inorganic Nanoparticles by Ionizing Radiation – a Review. Radiat. Phys. Chem 2020, 169, 108774. DOI: 10.1016/j.radphyschem.2020.108774.
  • Shrestha, S.; Wang, B.; Dutta, P. Nanoparticle Processing: Understanding and Controlling Aggregation. Adv. Colloid Interface Sci. 2020, 279, 102162. DOI: 10.1016/j.cis.2020.102162.
  • Elbasuney, S. Sustainable Steric Stabilization of Colloidal Titania Nanoparticles. Appl. Surf. Sci. 2017, 409, 438–447. DOI: 10.1016/j.apsusc.2017.03.013.
  • Clifford, D. M.; Castano, C. E.; Rojas, J. V. Supported Transition Metal Nanomaterials: Nanocomposites Synthesized by Ionizing Radiation. Radiat. Phys. Chem. 2017, 132, 52–64. DOI: 10.1016/j.radphyschem.2016.12.001.
  • Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface Modification of Inorganic Nanoparticles for Development of Organic–Inorganic Nanocomposites—a Review. Prog. Polym. Sci. 2013, 38, 1232–1261. DOI: 10.1016/j.progpolymsci.2013.02.003.
  • Kvítek, L.; Panáček, A.; Soukupová, J.; Kolář, M.; Večeřová, R.; Prucek, R.; Holecová, M.; Zbořil, R. Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs). J. Phys. Chem. C 2008, 112, 5825–5834. DOI: 10.1021/jp711616v.
  • Zhou, X.; El Khoury, J. M.; Qu, L.; Dai, L.; Li, Q. A Facile Synthesis of Aliphatic Thiol Surfactant with Tunable Length as a Stabilizer of Gold Nanoparticles in Organic Solvents. J. Colloid Interface Sci. 2007, 308, 381–384. DOI: 10.1016/j.jcis.2007.01.040.
  • Bhadani, A.; Kafle, A.; Ogura, T.; Akamatsu, M.; Sakai, K.; Sakai, H.; Abe, M. Current Perspective of Sustainable Surfactants Based on Renewable Building Blocks. Current Opin. Colloid & Interface Sci. 2020, 45, 124–135. DOI: 10.1016/j.cocis.2020.01.002.
  • Khan, Y.; Durrani, S. K.; Siddique, M.; Mehmood, M. Hydrothermal Synthesis of Alpha Fe2O3 Nanoparticles Capped by Tween-80. Mater. Lett. 2011, 65, 2224–2227. DOI: 10.1016/j.matlet.2011.04.068.
  • Premkumar, T.; Kim, D.; Lee, K.; Geckeler, K. E. Polysorbate 80 as a Tool: Synthesis of Gold Nanoparticles. Macromol. Rapid Commun. 2007, 28, 888–893. DOI: 10.1002/marc.200600858.
  • Li, H.-J.; Zhang, A.-Q.; Hu, Y.; Sui, L.; Qian, D.-J.; Chen, M. Large-Scale Synthesis and Self-Organization of Silver Nanoparticles with Tween 80 as a Reductant and Stabilizer. Nanoscale Res. Lett. 2012, 7, 612. DOI: 10.1186/1556-276X-7-612.
  • Hamzah, M. A. A.; Aruldass, C. A.; Ahmad, W. A.; Setu, S. A. Effects of Surfactants on Antibacterial Drugs – a Brief Review. Mal. J. Fund. Appl. Sci. 2017, 13, 118–123. DOI: 10.11113/mjfas.v13n2.595.
  • Al-Thamir, S. N.; Al-Sa’adi, M. A. K.; Al-Obaydi, I. A. The Effect of Polysorbate 80 on Antibiotics’ Sensitivity. Karbala J. Pharmaceut. Sci. 2010, 1, 1–11.
  • Elegir, G.; Kindl, A.; Sadocco, P.; Orlandi, M. Development of Antimicrobial Cellulose Packaging through Laccase-Mediated Grafting of Phenolic Compounds. Enzyme Microb. Technol. 2008, 43, 84–92. DOI: 10.1016/j.enzmictec.2007.10.003.
  • O'Toole, G. A. Microtiter Dish Biofilm Formation Assay. Jove. 2011, 47, e2437. DOI: 10.3791/2437.
  • Ahmed, A.; Khan, A. K.; Anwar, A.; Ali, S. A.; Shah, M. R. Biofilm Inhibitory Effect of Chlorhexidine Conjugated Gold Nanoparticles against Klebsiella pneumoniae. Microb. Pathog. 2016, 98, 50–56. DOI: 10.1016/j.micpath.2016.06.016.
  • Vijayakumar, S.; Malaikozhundan, B.; Parthasarathy, A.; Saravanakumar, K.; Wang, M.-H.; Vaseeharan, B. Nano Biomedical Potential of Biopolymer Chitosan-Capped Silver Nanoparticles with Special Reference to Antibacterial, Antibiofilm, Anticoagulant and Wound Dressing Material. J. Clust. Sci. 2020, 31, 355–366. DOI: 10.1007/s10876-019-01649-x.
  • Liu, Y.; Chen, S.; Zhong, L.; Wu, G. Preparation of High-Stable Silver Nanoparticle Dispersion by Using Sodium Alginate as a Stabilizer under Gamma Radiation. Radiat. Phys. Chem. 2009, 78, 251–255. DOI: 10.1016/j.radphyschem.2009.01.003.
  • Chahal, R. P.; Mahendia, S.; Tomar, A. K.; Kumar, S. γ-Irradiated PVA/Ag Nanocomposite Films: Materials for Optical Applications. J. Alloy, Compd. 2012, 538, 212–219. DOI: 10.1016/j.jallcom.2012.05.085.
  • Zayed, M. F.; Eisa, W. H.; El-Kousy, S. M.; Mleha, W. K.; Kamal, N. Ficus Retusa-Stabilized Gold and Silver Nanoparticles: Controlled Synthesis, Spectroscopic Characterization, and Sensing Properties. Spectrochim. Acta, Part A. 2019, 214, 496–512. DOI: 10.1016/j.saa.2019.02.042.
  • Eisa, W. H.; Zayed, M. F.; Anis, B.; Abbas, L. M.; Ali, S. S. M.; Mostafa, A. M. Clean Production of Powdery Silver Nanoparticles Using Zingiber Officinale: The Structural and Catalytic Properties. J. Cleaner Prod. 2019, 241, 118398. DOI: 10.1016/j.jclepro.2019.118398.
  • Moudgil, A.; Deval, A. S.; Dharne, M. S.; Sarkar, D. M.; Choudhari, A. S.; Chaudhari, B. P. Eichhornia Crassipes Mediated Bioinspired Synthesis of Crystalline Nano Silver as an Integrated Medicinal Material: A Waste to Value Approach. J. Cluster Sci. 2020, DOI: 10.1007/s10876-020-01797-5.
  • Le Caër, S. J. W. Water Radiolysis: influence of Oxide Surfaces on H2 Production under Ionizing Radiation. Water 2011, 3, 235–253. DOI: 10.3390/w3010235.
  • Naghavi, K.; Saion, E.; Rezaee, K.; Yunus, W. M. M. Influence of Dose on Particle Size of Colloidal Silver Nanoparticles Synthesized by Gamma Radiation. Radiat. Phys. Chem 2010, 79, 1203–1208. DOI: 10.1016/j.radphyschem.2010.07.009.
  • Abedini, A.; Bakar, A. A. A.; Larki, F.; Menon, P. S.; Islam, M. S.; Shaari, S. Recent Advances in Shape-Controlled Synthesis of Noble Metal Nanoparticles by Radiolysis Route. Nanoscale Res Lett 2016, 11, 287DOI: 10.1186/s11671-016-1500-z.
  • Khan, Y.; Durrani, S. K.; Mehmood, M.; Ahmad, J.; Khan, M. R.; Firdous, S. Low Temperature Synthesis of Fluorescent ZnO Nanoparticles. Appl. Surf. Sci. 2010, 257, 1756–1761. DOI: 10.1016/j.apsusc.2010.09.011.
  • Xiong, J.; Xiong, S.; Guo, Z.; Yang, M.; Chen, J.; Fan, H. Ultrasonic Dispersion of Nano TiC Powders Aided by Tween 80 Addition. Ceram. Int. 2012, 38, 1815–1821. DOI: 10.1016/j.ceramint.2011.10.004.
  • Liu, Y.; Gu, J.; Zhang, J.; Yu, F.; Wang, J.; Nie, N.; Li, W. LiFePO4 Nanoparticles Growth with Preferential (010) Face Modulated by Tween-80. RSC Adv. 2015, 5, 9745–9751. DOI: 10.1039/C4RA14791J.
  • Eisa, W. H.; Abdel‐Baset, T. A.; Mohamed, E. M. A.; Mahrous, S. Crosslinked PVA/PVP Supported Silver Nanoparticles: A Reusable and Efficient Heterogeneous Catalyst for the 4-Nitrophenol Degradation. J. Inorg. Organomet. Polym. 2017, 27, 1703–1711. DOI: 10.1007/s10904-017-0632-7.
  • El-Batal, A. I.; Mosallam, F. M.; El-Sayyad, G. S. Synthesis of Metallic Silver Nanoparticles by Fluconazole Drug and Gamma Rays to Inhibit the Growth of Multidrug-Resistant Microbes. J. Clust. Sci. 2018, 29, 1003–1015. DOI: 10.1007/s10876-018-1411-5.
  • Ahmed, S.; Ahmad, M.; Swami, B. L.; Ikram, S. A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise. J. Adv. Res. 2016, 7, 17–28. DOI: 10.1016/j.jare.2015.02.007.
  • Horta-Piñeres, S.; Britto Hurtado, R.; Avila-Padilla, D.; Cortez-Valadez, M.; Flores-López, N. S.; Flores-Acosta, M. Silver Nanoparticle-Decorated Silver Nanowires: A Nanocomposite via Green Synthesis. Appl. Phys. A. 2020, 126, 15. DOI: 10.1007/s00339-019-3178-4.
  • Delgado-Beleño, Y.; Martinez-Nuñez, C. E.; Cortez-Valadez, M.; Flores-López, N. S.; Flores-Acosta, M. Optical Properties of Silver, Silver Sulfide and Silver Selenide Nanoparticles and Antibacterial Applications. Mater. Res. Bull. 2018, 99, 385–392. DOI: 10.1016/j.materresbull.2017.11.015.
  • Flores-López, N. S.; Cortez-Valadez, M.; Moreno-Ibarra, G. M.; Larios-Rodríguez, E.; Torres-Flores, E. I.; Delgado-Beleño, Y.; Martinez-Nuñez, C. E.; Ramírez-Rodríguez, L. P.; Arizpe-Chávez, H.; Castro-Rosas, J.; et al. Silver Nanoparticles and Silver Ions Stabilized in NaCl Nanocrystals. Physica E. 2016, 84, 482–488. DOI: 10.1016/j.physe.2016.07.012.
  • Slavin, Y. N.; Asnis, J.; Häfeli, U. O.; Bach, H. Metal Nanoparticles: understanding the Mechanisms behind Antibacterial Activity. J. Nanobiotechnol. 2017, 15, 65.
  • Zayed, M. F.; Mahfoze, R. A.; El-Kousy, S. M.; Al-Ashkar, E. A. In-Vitro Antioxidant and Antimicrobial Activities of Metal Nanoparticles Biosynthesized Using Optimized Pimpinella Anisum Extract. Colloids Surf. A. 2020, 585, 124167. DOI: 10.1016/j.colsurfa.2019.124167.
  • Choudhury, H.; Pandey, M.; Lim, Y. Q.; Low, C. Y.; Lee, C. T.; Marilyn, T. C. L.; Loh, H. S.; Lim, Y. P.; Lee, C. F.; Bhattamishra, S. K.; et al. Silver Nanoparticles: Advanced and Promising Technology in Diabetic Wound Therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 112, 110925. DOI: 10.1016/j.msec.2020.110925.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.