Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 6
156
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bivalve shells (Corbula trigona) as a new adsorbent for the defluoridation of groundwater by adsorption-precipitation

, ORCID Icon, , , &
Pages 694-704 | Received 29 Sep 2020, Accepted 05 Apr 2021, Published online: 13 May 2021

References

  • Taylor S. R. Abundance of Chemical Elements in the Continental Crust: A New Table. Geochim. Cosmochim. Acta. 1964, 28, 1273–1285. DOI: 10.1016/0016-7037(64)90129-2.
  • Podgorski, J. E.; Labhasetwar, P.; Saha, D.; Berg, M. Prediction Modeling and Mapping of Groundwater Fluoride Contamination throughout India. Environ. Sci. Technol. 2018, 52, 9889–9898. DOI: 10.1021/acs.est.8b01679.
  • Barathi, M.; Kumar, A. S. K.; Rajesh, N. Impact of Fluoride in Potable Water – an Outlook on the Existing Defluoridation Strategies and the Road Ahead. Coord. Chem. Rev. 2019, 387, 121–128. DOI: 10.1016/j.ccr.2019.02.006.
  • Malago, J.; Makoba, E.; Muzuka, A. N. N. Fluoride Levels in Surface and Groundwater in Africa: A Review. AJWSE. 2017, 3, 1. DOI: 10.11648/j.ajwse.20170301.11.
  • Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Naidu, R. Defluoridation of Drinking Water Using Adsorption Processes. J. Hazard. Mater. 2013, 248-249, 1–19. DOI: 10.1016/j.jhazmat.2012.12.043.
  • Lee, B. S.; Chou, P. H.; Chen, S. Y.; Liao, H. Y.; Chang, C. C. Prevention of Enamel Demineralization with a Novel Fluoride Strip: enamel Surface Composition and Depth Profile. Sci. Rep. 2015, 5, 13352. DOI: 10.1038/srep13352.
  • Wei, W.; Pang, S.; Sun, D. The Pathogenesis of Endemic Fluorosis: Research Progress in the Last 5 Years. J. Cell Mol. Med. 2019, 23, 2333–2342. DOI: 10.1111/jcmm.14185.
  • Fawell, J.; Bailey, K.; Chilton, J.; Dahi, E. Fluoride in Drinking-Water; World Health Organization. IWA Publishing, London. 2006.
  • Islam, M.; Patel, R. Thermal Activation of Basic Oxygen Furnace Slag and Evaluation of Its Fluoride Removal Efficiency. Chem. Eng. J. 2011, 169, 68–77. DOI: 10.1016/j.cej.2011.02.054.
  • Barberio, A. M.; Hosein, F. S.; Quiñonez, C.; McLaren, L. Fluoride Exposure and Indicators of Thyroid Functioning in the Canadian Population: implications for Community Water Fluoridation. J. Epidemiol. Community Health. 2017, 71, 1019–1025. DOI: 10.1136/jech-2017-209129.
  • Xia, Y.; Huang, X.; Li, W.; Zhang, Y.; Li, Z. Facile Defluoridation of Drinking Water by Forming Shell@Fluorapatite Nanoarray during Boiling Egg Shell. J. Hazard. Mater. 2019, 361, 321–328. DOI: 10.1016/j.jhazmat.2018.09.007.
  • Craig, L.; Lutz, A.; Berry, K. A.; Yang, W. Recommendations for Fluoride Limits in Drinking Water Based on Estimated Daily Fluoride Intake in the Upper East Region, Ghana. Sci. Total Environ. 2015, 532, 127–137. DOI: 10.1016/j.scitotenv.2015.05.126.
  • Chakrabortty, S.; Roy, M.; Pal, P. Removal of Fluoride from Contaminated Groundwater by Cross Flow Nanofiltration: Transport Modeling and Economic Evaluation. Desalination. 2013, 313, 115–124. DOI: 10.1016/j.desal.2012.12.021.
  • Owusu-Agyeman, I.; Reinwald, M.; Jeihanipour, A.; Schäfer, A. I. Removal of Fluoride and Natural Organic Matter Removal from Natural Tropical Brackish Waters by Nanofiltration/Reverse Osmosis with Varying Water Chemistry. Chemosphere. 2019, 217, 47–58. DOI: 10.1016/j.chemosphere.2018.10.135.
  • Peng, C.; Liu, H.; Qiao, H.; Luo, J.; Liu, X.; Hou, R.; Wan, X.; Cai, H. Evaluation of the Feasibility of Short-Term Electrodialysis for Separating Naturally Occurring Fluoride from Instant Brick Tea Infusion. J. Sci. Food Agric. 2020, 100, 168–176. DOI: 10.1002/jsfa.10011.
  • Grich, N. B.; Attour, A.; Mostefa, M. L. P.; Guesmi, S.; Tlili, M.; Lapicque, F. Fluoride Removal from Water by Electrocoagulation: Effect of the Type of Water and the Experimental Parameters. Electrochim. Acta. 2019, 316, 257–265. DOI: 10.1016/j.electacta.2019.05.130.
  • Cohen, D.; Conrad, H. M. 65 000 GPD Fluoride Removal Membrane System in Lakeland, California, USA. Desalination. 1998, 117, 19–35. DOI: 10.1016/S0011-9164(98)00063-0.
  • Zhang, Z.; Tan, Y.; Zhong, M. Wastewater by Calcium Chloride Modified Natural Zeolite. Desalination. 2011, 276, 246–252. DOI: 10.1016/j.desal.2011.03.057.
  • Sakhare, N.; Lunge, S.; Rayalu, S.; Bakardjiva, S.; Subrt, J.; Devotta, S.; Labhsetwar, N. Defluoridation of Water Using Calcium Aluminate Material. Chem. Eng. J. 2012, 203, 406–414. DOI: 10.1016/j.cej.2012.07.065.
  • Ben Nasr, A.; Walha, K.; Charcosset, C.; Ben Amar, R. Removal of Fluoride Ions Using Cuttlefish Bones. J. Fluorine Chem. 2011, 132, 57–62. DOI: 10.1016/j.jfluchem.2010.11.006.
  • Biswas, G.; Dutta, M.; Dutta, S.; Adhikari, K. A Comparative Study of Removal of Fluoride from Contaminated Water Using Shale Collected from Different Coal Mines in India. Environ. Sci. Pollut. Res. 2016, 23, 9418–9431. DOI: 10.1007/s11356-015-5815-6.
  • Salifu, A.; Petrusevski, B.; Mwampashi, E. S.; Pazi, I. A.; Ghebremichael, K.; Buamah, R.; Aubry, C.; Amy, G. L.; Kenedy, M. D. Defluoridation of Groundwater Using Aluminum-Coated Bauxite: Optimization of Synthesis Process Conditions and Equilibrium Study. J. Environ. Manage. 2016, 181, 108–117. DOI: 10.1016/j.jenvman.2016.06.011.
  • Lv, G.; Wu, L.; Liao, L.; Zhang, Y.; Li, Z. Preparation and Characterization of Red Mud Sintered Porous Materials for Water Defluoridation. Appl. Clay Sci. 2013, 74, 95–101. DOI: 10.1016/j.clay.2012.10.004.
  • Nabbou, N.; Belhachemi, M.; Boumelik, M.; Merzougui, T.; Lahcene, D.; Harek, Y.; Zorpas, A. A.; Jeguirim, M. Removal of Fluoride from Groundwater Using Natural Clay (Kaolinite): Optimization of Adsorption Conditions. C. R. Chimie. 2019, 22, 105–112. DOI: 10.1016/j.crci.2018.09.010.
  • Vijila, B.; Gladis, E. E. H.; Jose, J. M. A.; Sharmila, T. M.; Joseph, J. Removal of Fluoride with Rice Husk Derived Adsorbent from Agro Waste Materials. Mater. Today Proc.. 2020. DOI: 10.1016/j.matpr.2020.09.729.
  • Pillai, P.; Dharaskar, S.; Shah, M.; Sultania, R. Determination of Fluoride Removal Using Silica Nano Adsorbent Modified by Rice Husk from Water. Groundw. Sustain. Dev. 2020, 11, 100423. DOI: 10.1016/j.gsd.2020.100423.
  • Hadi, M.; Gholami, S.; Rao, R.; Lima, E. C. Process Modeling, Characterization, Optimization, and Mechanisms of Fluoride Adsorption Using Magnetic Agro-Based Adsorbent. J. Environ. Manage. 2021, 286, 112173. DOI: 10.1016/j.jenvman.2021.112173.
  • Pigatto, R. S.; Franco, D. S. P.; Netto, M. S.; Carissimi, É.; Oliveira, L. F. S.; Jahn, S. L.; Dotto, G. L. An Eco-Friendly and Low-Cost Strategy for Groundwater Defluorination: Adsorption of Fluoride onto Calcinated Sludge. J. Environ. Chem. Eng. 2020, 8, 104546. DOI: 10.1016/j.jece.2020.104546.
  • Lee, J. I.; Kang, J. K.; Hong, S. H.; Lee, C. G.; Jeong, S.; Park, S. J. Thermally Treated Mytilus Coruscus Shells for Fluoride Removal and Their Adsorption Mechanism. Chemosphere. 2021, 263, 128328. DOI: 10.1016/j.chemosphere.2020.128328.
  • Guiza, S.; Brouers, F.; Bagane, M. Fluoride Removal from Aqueous Solution by Montmorillonite Clay: Kinetics and Equilibrium Modeling Using New Generalized Fractal Equation. Environ. Technol. Innovation. 2021, 21, 101187. DOI: 10.1016/j.eti.2020.101187.
  • Kumar, P.; Prajapati, A. K.; Dixit, S.; Yadav, V. L. Adsorption of Fluoride from Aqueous Solution Using Biochar Prepared from Waste Peanut Hull. Mater. Res. Express. 2020, 2, 0–26.
  • Paudyal, H.; Ohto, K.; Kawakita, H.; Inoue, K. Recovery of Fluoride from Water through Adsorption Using Orange-Waste Gel, Followed by Desorption Using Saturated Lime Water. J. Mater. Cycles Waste Manag. 2020, 22, 1484–1491. DOI: 10.1007/s10163-020-01042-1.
  • Turner, B. D.; Binning, P.; Stipp, S. L. S. Fluoride Removal by Calcite: Evidence for Fluorite Precipitation and Surface Adsorption. Environ. Sci. Technol. 2005, 39, 9561–9568. DOI: 10.1021/es0505090.
  • Bouye, T. R.; Sika, A.; Memel, J. D.; Karamoko, M.; Otchoumou, A. Effets de la Teneur en Poudre de Coquilles de Bivalves (Corbula Trigona) du Substrat Sur Les Paramètres de Croissance D’Achatina Achatina (Linné, 1758) en Élevage Hors-Sol. Afrique Science. 2013, 9, 142–153. DOI: 10.4314/afsci.v9i2.142–153.
  • Elwakeel, K. Z.; Elgarahy, A. M.; Mohammad, S. H. Use of Beach Bivalve Shells Located at Port Said Coast (Egypt) as a Green Approach for Methylene Blue Removal. J. Environ. Chem. Eng. 2017, 5, 578–587. DOI: 10.1016/j.jece.2016.12.032.
  • Ben Nasr, A.; Walha, K.; Puel, F.; Mangin, D.; Ben Amar, R.; Charcosset, C. Precipitation and Adsorption during Fluoride Removal from Water by Calcite in the Presence of Acetic Acid. Desalin. Water Treat. 2014, 52, 2231–2240. DOI: 10.1080/19443994.2013.799441.
  • Zuykov, M.; Pelletier, E.; Saint-Louis, R.; Checa, A.; Demers, S. Biosorption of Thorium on the External Shell Surface of Bivalve Mollusks: The Role of Shell Surface Microtopography. Chemosphere. 2012, 86, 680–683. DOI: 10.1016/j.chemosphere.2011.11.023.
  • Jalil, A. A.; Triwahyono, S.; Yaakob, M. R.; Azmi, Z. Z. A.; Sapawe, N.; Kamarudin, N. H. N.; Setiabudi, H. D. Jaafar, N. F.; Sidik, S. M.; Adam, S. H.; Hameed, B. H. Utilization of Bivalve Shell-Treated Zea Mays L. (Maize) Husk Leaf as a Low-Cost Biosorbent for Enhanced Adsorption of Malachite Green. Bioresour. Technol. 2012, 120, 218–224. DOI: 10.1016/j.biortech.2012.06.066.
  • Khan, M. D.; Khan, M. D.; Chottitisupawong, T.; Vu, H. H. T.; Ahn, J. W.; Kim, G. M. Removal of Phosphorus from an Aqueous Solution by Nanocalcium Hydroxide Derived from Waste Bivalve Seashells: Mechanism and Kinetics. ACS Omega. 2020, 5, 12290–12301. DOI: 10.1021/acsomega.0c00993.
  • AFNOR, Essais des Eaux. Qualité de L’eau, Association Française de Normalisation; Tour Europe, Paris. 1994.
  • Lopez-Ramon, M. V; Stoeckli, F.; Moreno-Castilla, C.; Carrasco-Marin, F. On the Characterization of Acidic and Basic Surface Sites on Carbons by Various Techniques. Carbon. 1999, 37, 1215–1221. DOI: 10.1016/S0008-6223(98)00317-0.
  • Clescerl, L.S.; Greenberg, A.E.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association, 1998.
  • Yang, C.; Guan, L.; Wang, J.; Yang, X.; Lin, M.; You, G.; Tan, S.; Yu, X.; Ge, M. Enhanced Fluoride Removal Behaviour and Mechanism by Dicalcium Phosphate from Aqueous Solution. Environ. Technol. 2019, 40, 3668–3677. DOI: 10.1080/09593330.2018.1484523.
  • Sarma, G. K.; Khan, A.; El-Toni, A. M.; Rashid, M. H. Shape-Tunable CuO-Nd(OH)3 Nanocomposites with Excellent Adsorption Capacity in Organic Dye Removal and Regeneration of Spent Adsorbent to Reduce Secondary Waste. J. Hazard. Mater. 2019, 380, 120838. DOI: 10.1016/j.jhazmat.2019.120838.
  • Subramanyam, B.; Das, A. Linearized and Non-Linearized Isotherm Models Comparative Study on Adsorption of Aqueous Phenol Solution in Soil. Int. J. Environ. Sci. Technol. 2009, 6, 633–640. DOI: 10.1007/BF03326104.
  • Shakya, A. K.; Bhande, R.; Ghosh, P. K. A Practical Approach on Reuse of Drinking Water Treatment Plant Residuals for Fluoride Removal. Environ. Technol. 2019, 41, 2907–291. DOI: 10.1080/09593330.2019.1588383.
  • Render, D.; Samuel, T.; King, H.; Vig, M.; Jeelani, S.; Babu, R. J.; Rangari, V. Biomaterial-Derived Calcium Carbonate Nanoparticles for Enteric Drug Delivery. J. Nanomat. 1 2016, 2016. DOI: 10.1155/2016/3170248.
  • Gopi, S.; Subramanian, V. K.; Palanisamy, K. Aragonite-Calcite-Vaterite: A Temperature Influenced Sequential Polymorphic Transformation of CaCO3 in the Presence of DTPA. Mater. Res. Bul. 2013, 48, 1906–1912. DOI: 10.1016/j.materresbull.2013.01.048.
  • Sun, J.; Wang, L.; Zhao, D. Polymorph and Morphology of CaCO3 in Relation to Precipitation Conditions in a Bubbling System. Chin. J. Chem. Eng. 2017, 25, 1335–1342. DOI: 10.1016/j.cjche.2016.12.004.
  • Galván-Ruiz, M.; Hernández, J.; Baños, L. Noriega-Montes, J.; Rodríguez-García, M. E. Characterization of Calcium Carbonate, Calcium Oxide, and Calcium Hydroxide as Starting Point to the Improvement of Lime for Their Use in Construction. J. Mater. Civ. Eng. 2009, 21, 694–698. DOI: 10.1061/(ASCE)0899-1561(2009)21:11(694).
  • Nath, S. K.; Dutta, R. K. Acid-Enhanced Limestone Defluoridation in Column Reactor Using Oxalic Acid. Process Saf. Environ. Prot. 2012, 90, 65–75. DOI: 10.1016/j.psep.2011.07.001.
  • Qiu, H.; Ling, C.; Yuan, R.; Liu, F. Li, A. Bridging Effects behind the Coadsorption of Copper and Sulfamethoxazole by a Polyamine-Modified Resin. Chem. Eng. J. 2019, 362, 422–429. DOI: 10.1016/j.cej.2019.01.043.
  • Zhou, Z.; Li, W.; Song, J.; Mei, B.; Yi, G.; Yang, Y. Application of Judd–Ofelt Theory in Analyzing Nd3+ Doped SrF2 and CaF2 Transparent Ceramics. J. Eur. Ceram. Soc. 2019, 39, 2446–2452. DOI: 10.1016/j.jeurceramsoc.2019.02.033.
  • Singh, S.; German, M.; Chaudhari, S.; Sengupta, A. K. Fluoride Removal from Groundwater Using Zirconium Impregnated Anion Exchange Resin. J. Environ. Manage. 2020, 263, 110415. DOI: 10.1016/j.jenvman.2020.110415.
  • El-Khaiary, M. I.; Malash, G. F. Common Data Analysis Errors in Batch Adsorption Studies. Hydrometallurgy. 2011, 105, 314–320. DOI: 10.1016/j.hydromet.2010.11.005.
  • Liu, X.; Tian, J.; Li, Y.; Sun, N.; Mi, S.; Xie, Y.; Chen, Z. Enhanced Dyes Adsorption from Wastewater via Fe3O4 Nanoparticles Functionalized Activated Carbon. J. Hazard. Mater. 2019, 373, 397–407. DOI: 10.1016/j.jhazmat.2019.03.103.
  • Lima, E. C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J. C.; Anastopoulos, I. Anastopoulos, I. A Critical Review of the Estimation of the Thermodynamic Parameters on Adsorption Equilibria. Wrong Use of Equilibrium Constant in the Van’t Hoof Equation for Calculation of Thermodynamic Parameters of Adsorption. J. Mol. Liq. 2019, 273, 425–434. DOI: 10.1016/j.molliq.2018.10.048.
  • Borgohain, X.; Boruah, A.; Sarma, G. K.; Rashid, M. H. Rapid and Extremely High Adsorption Performance of Porous MgO Nanostructures for Fluoride Removal from Water. J. Mol. Liq. 2020, 305, 112799. DOI: 10.1016/j.molliq.2020.112799.
  • Tan, T. L.; Krusnamurthy, P. A.; Nakajima, H.; Rashid, S. A. Adsorptive, Kinetics and Regeneration Studies of Fluoride Removal from Water Using Zirconium-Based Metal Organic Frameworks. RSC Adv. 2020, 10, 18740–18752. DOI: 10.1039/D0RA01268H.
  • Malakootian, M.; Moosazadeh, M.; Yousefi, N.; Fatehizadeh, A. Fluoride Removal from Aqueous Solution by Pumice: Case Study on Kuhbonan Water. Afr. J. Environ. Sci. Technol. 2011, 5, 299–306. http://www.academicjournals.org/AJEST.
  • Smittakorn, S.; Jirawongboonrod, N.; Mongkolnchai-Arunya, S.; Durnford, D. Homemade Bone Charcoal Adsorbent for Defluoridation of Groundwater in Thailand. J. Water Health. 2010, 8, 826–836. DOI: 10.2166/wh.2010.131.
  • Tripathy, S. S.; Raichur, A. M. Abatement of Fluoride from Water Using Manganese Dioxide-Coated Activated Alumina. J. Hazard. Mater. 2008, 153, 1043–1051. DOI: 10.1016/j.jhazmat.2007.09.100.
  • Chen, N.; Zhang, Z.; Feng, C.; Li, M.; Zhu, D.; Sugiura, N. Studies on Fluoride Adsorption of Iron-Impregnated Granular Ceramics from Aqueous Solution. Mater. Chem. Phys. 2011, 125, 293–298. DOI: 10.1016/j.matchemphys.2010.09.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.