Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 7
160
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Oleuropein attenuates the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-perturbing effects on pancreatic β-cells

, , , , , & show all
Pages 752-761 | Received 03 Sep 2020, Accepted 22 Apr 2021, Published online: 13 May 2021

References

  • Michalek, J. E.; Tripathi, R. C. Pharmacokinetics of TCDD in Veterans of Operation Ranch Hand: 15-Year Follow-up. J. Toxic. Environ. Health A 1999, 57, 369–378.
  • Alonso-Magdalena, P.; Quesada, I.; Nadal, A. Endocrine Disruptors in the Etiology of Type 2 Diabetes Mellitus. Nat. Rev. Endocrinol. 2011, 7, 346–353. DOI: 10.1038/nrendo.2011.56.
  • Novelli, M.; Piaggi, S.; De Tata, V. 2. 3,7,8-Tetrachlorodibenzo-p-Dioxin-Induced Impairment of Glucose-Stimulated Insulin Secretion in Isolated Pancreatic Islets. Toxicol. Lett. 2005, 156, 307–314. DOI: 10.1016/j.toxlet.2004.12.004.
  • Piaggi, S.; Novelli, M.; Martino, L.; Masini, M.; Raggi, C.; Orciuolo, E.; Masiello, P.; Casini, A.; De Tata, V. Cell Death and Impairment of Glucose-Stimulated Insulin Secretion Induced by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) in the β-Cell Line INS-1E. Toxicol. Appl. Pharmacol. 2007, 220, 333–340. DOI: 10.1016/j.taap.2007.01.017.
  • Watkins, B. A.; Hannon, K.; Ferruzzi, M.; Li, Y. Dietary PUFA and Flavonoids as Deterrents for Environmental Pollutants. J. Nutr. Biochem. 2007, 18, 196–205. DOI: 10.1016/j.jnutbio.2006.12.002.
  • Choi, E. M.; Suh, K. S.; Jung, W. W.; Park, S. Y.; Chin, S. O.; Rhee, S. Y.; Kim Pak, Y.; Chon, S. Actein Alleviates 2,3,7,8-Tetrachlorodibenzo-p-Dioxin-Mediated Cellular Dysfunction in Osteoblastic MC3T3-E1 Cells. Environ. Toxicol. 2017, 32, 2455–2470. DOI: 10.1002/tox.22459.
  • Suh, K. S.; Choi, E. M.; Kim, H.; Park, S. Y.; Chin, S. O.; Rhee, S. Y.; Kim Pak, Y.; Choe, W.; Ha, J.; Chon, S. Xanthohumol Ameliorates 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Induced Cellular Toxicity in Cultured MC3T3-E1 Osteoblastic Cells. J. Appl. Toxicol. 2018, 38, 1036–1046. DOI: 10.1002/jat.3613.
  • Choi, E. M.; Suh, K. S.; Jung, W. W.; Park, S. Y.; Chin, S. O.; Rhee, S. Y.; Kim Park, Y.; Chon, S. Glabridin Attenuates Antiadipogenic Activity Induced by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin in Murine 3T3-L1 Adipocytes. J. Appl. Toxicol. 2018, 38, 1426–1436. DOI: 10.1002/jat.3664.
  • Roeder, R. A.; Garber, M. J.; Schelling, G. T. Assessment of Dioxins in Foods from Animal Origins. J. Anim. Sci. 1998, 76, 142–151. DOI: 10.2527/1998.761142x.
  • Andrikopoulos, N. K.; Antonopoulou, S.; Kaliora, A. C. Oleuropein Inhibits LDL Oxidation Induced by Cooking Oil Frying by-Products and Platelet Aggregation Induced by Platelet-Activating Factor. LWT. Food Sci. Technol 2002, 35, 479–484. DOI: 10.1006/fstl.2002.0893.
  • Visioli, F.; Poli, A.; Gall, C. Antioxidant and Other Biological Activities of Phenols from Olives and Olive Oil. Med. Res. Rev. 2002, 22, 65–75. DOI: 10.1002/med.1028.
  • Jemai, H.; El Feki, A.; Sayadi, S. Antidiabetic and Antioxidant Effects of Hydroxytyrosol and Oleuropein from Olive Leaves in Alloxan-Diabetic Rats. J. Agric. Food Chem. 2009, 57, 8798–8804. [Database] DOI: 10.1021/jf901280r.
  • Murotomi, K.; Umeno, A.; Yasunaga, M.; Shichiri, M.; Ishida, N.; Koike, T.; Matsuo, T.; Abe, H.; Yoshida, Y.; Nakajima, Y. Oleuropein-Rich Diet Attenuates Hyperglycemia and Impaired Glucose Tolerance in Type 2 Diabetes Model Mouse. J. Agric. Food Chem. 2015, 63, 6715–6722. DOI: 10.1021/acs.jafc.5b00556.
  • de Bock, M.; Derraik, J. G. B.; Brennan, C. M.; Biggs, J. B.; Morgan, P. E.; Hodgkinson, S. C.; Hofman, P. L.; Cutfield, W. S. Olive (Olea europaea L.) Leaf Polyphenols Improve Insulin Sensitivity in Middle-Aged Overweight Men: A Randomized, Placebo-Controlled, Crossover Trial. PLoS One 2013, 8, e57622. DOI: 10.1371/journal.pone.0057622.
  • Allagnat, F.; Cunha, D.; Moore, F.; Vanderwinden, J. M.; Eizirik, D. L.; Cardozo, A. K. Mcl-1 Downregulation by Pro-Inflammatory Cytokines and Palmitate is an Early Event Contributing to β-Cell Apoptosis. Cell Death Differ. 2011, 18, 328–337. DOI: 10.1038/cdd.2010.105.
  • O'Connell, M.; McClure, N.; Lewis, S. E. M. The Effects of Cryopreservation on Sperm Morphology, Motility and Mitochondrial Function. Hum. Rep. 2002, 17, 704–709. DOI: 10.1093/humrep/17.3.704.
  • Donath, M. Y.; Størling, J.; Maedler, K.; Mandrup-Poulsen, T. Inflammatory Mediators and Islet β-Cell Failure: A Link between Type 1 and Type 2 Diabetes. J. Mol. Med. 2003, 81, 455–470. DOI: 10.1007/s00109-003-0450-y.
  • Meng, Z. X.; Sun, J. X.; Ling, J. J.; Lv, J. H.; Zhu, D. Y.; Chen, Q.; Sun, Y. J.; Han, X. Prostaglandin E2 Regulates Foxo Activity via the Akt Pathway: implications for Pancreatic Islet Beta Cell Dysfunction. Diabetologia 2006, 49, 2959–2968. DOI: 10.1007/s00125-006-0447-5.
  • Ramanadham, S.; Bohrer, A.; Mueller, M.; Jett, P.; Gross, R. W.; Turk, J. Mass Spectrometric Identification and Quantitation of Arachidonate-Containing Phospholipids in Pancreatic Islets: Prominence of Plasmenylethanolamine Molecular Species. Biochemistry 1993, 32, 5339–5351. DOI: 10.1021/bi00071a009.
  • Coleman, R. A.; Smith, W. L.; Narumiya, S. International Union of Pharmacology Classification of Prostanoid Receptors: properties, Distribution, and Structure of the Receptors and Their Subtypes. Pharmacol. Rev. 1994, 46, 205–229.
  • Tran, P. O. T.; Gleason, C. E.; Robertson, R. P. Inhibition of Interleukin-1β-Induced COX-2 and EP3 Gene Expression by Sodium Salicylate Enhances Pancreatic Islet β-Cell Function. Diabetes 2002, 51, 1772–1778. DOI: 10.2337/diabetes.51.6.1772.
  • Smyth, E. M.; Grosser, T.; Wang, M.; Yu, Y.; FitzGerald, G. A. Prostanoids in Health and Disease. J. Lipid Res. 2009, 50, S423–S428. DOI: 10.1194/jlr.R800094-JLR200.
  • Kimple, M. E.; Keller, M. P.; Rabaglia, M. R.; Pasker, R. L.; Truchan, N. A.; Neuman, J. C.; Brar, H. K.; Attie, A. D. The Prostaglandin E2 Receptor, EP3, Is Induced in Diabetic Islets and Negatively Regulates Glucose-and Hormone-Stimulated Insulin Secretion. Diabetes 2013, 62, 1904–1912. DOI: 10.2337/db12-0769.
  • DuBois, R. N.; Abramson, S. B.; Crofford, L.; Gupta, R. A.; Simon, L. S.; Putte, L. B. A.; Lipsky, P. E. Cyclooxygenase in Biology and Disease. FASEB J. 1998, 12, 1063–1073. [Database] DOI: 10.1096/fasebj.12.12.1063.
  • Dennis, E. A.; Cao, J.; Hsu, Y. H.; Magrioti, V.; Kokotos, G. Phospholipase A2 Enzymes: Physical Structure, Biological Function, Disease Implication, Chemical Inhibition, and Therapeutic Intervention. Chem. Rev. 2011, 111, 6130–6185. DOI: 10.1021/cr200085w.
  • Bone, R. N.; Gai, Y.; Magrioti, V.; Kokotou, M. G.; Ali, T.; Lei, X.; Tse, H. M.; Kokotos, G.; Ramanadham, S. Inhibition of Ca2+-Independent Phospholipase A2β (iPLA2β) Ameliorates Islet Infiltration and Incidence of Diabetes in NOD Mice. Diabetes 2015, 64, 541–554. DOI: 10.2337/db14-0097.
  • Charles, G. D.; Shiverick, K. T. 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Increases mRNA Levels for Interleukin-1beta, Urokinase Plasminogen Activator, and Tumor Necrosis Factor-Alpha in Human Uterine Endometrial Adenocarcinoma RL95-2 Cells. Biochem. Biophys. Res. Commun. 1997, 238, 338–342. DOI: 10.1006/bbrc.1997.7291.
  • Pohjanvirta, R.; Tuomisto, J. Short-Term Toxicity of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin in Laboratory Animals: effects, Mechanisms, and Animal Models. Pharmacol. Rev. 1994, 46, 483–549.
  • Drozdzik, A.; Dziedziejko, V.; Kurzawski, M. IL-1 and TNF-α Regulation of Aryl Hydrocarbon Receptor (AhR) Expression in HSY Human Salivary Cells. Arch. Oral Biol. 2014, 59, 434–439. DOI: 10.1016/j.archoralbio.2014.02.003.
  • Kobayashi, S.; Okamoto, H.; Iwamoto, T.; Toyama, Y.; Tomatsu, T.; Yamanaka, H.; Momohara, S. A Role for the Aryl Hydrocarbon Receptor and the Dioxin TCDD in Rheumatoid Arthritis. Rheumatology 2008, 47, 1317–1322. DOI: 10.1093/rheumatology/ken259.
  • Qi, M.; Elion, E. A. MAP Kinase Pathways. J. Cell Sci. 2005, 118, 3569–3572. DOI: 10.1242/jcs.02470.
  • Evans, J. L.; Goldfine, I. D.; Maddux, B. A.; Grodsky, G. M. Are Oxidative Stress-Activated Signaling Pathways Mediators of Insulin Resistance and -Cell Dysfunction? Diabetes 2003, 52, 1–8. DOI: 10.2337/diabetes.52.1.1.
  • Hirosumi, J.; Tuncman, G.; Chang, L.; Gö RgüN, C. Z.; Uysal, K. T.; Maeda, K.; Karin, M.; Hotamisligil, G. S. A Central Role for JNK in Obesity and Insulin Resistance. Nature 2002, 420, 333–336. DOI: 10.1038/nature01137.
  • Fornoni, A.; Pileggi, A.; Molano, R. D.; Sanabria, N. Y.; Tejada, T.; Gonzalez-Quintana, J.; Ichii, H.; Inverardi, L.; Ricordi, C.; Pastori, R. L. Inhibition of c-Jun N Terminal Kinase (JNK) Improves Functional-Cell Mass in Humanislets and Leads toAKTand Glycogen Synthase Kinase-3 (GSK-3) Phosphorylation. Diabetologia 2008, 51, 298–308. DOI: 10.1007/s00125-007-0889-4.
  • Whiteman, E. L.; Cho, H.; Birnbaum, M. J. Role of Akt/Protein Kinase B in Metabolism. Trends Endocrinol. Metab. 2002, 13, 444–451. DOI: 10.1016/S1043-2760(02)00662-8.
  • Kwon, M. J.; Jeong, K. S.; Choi, E. J.; Lee, B. H. 2,3,7,8-Tetrachlorodibenzo-Pdioxin (TCDD)-Induced Activation of Mitogen-Activated Protein Kinase Signaling Pathway in Jurkat T Cells. Pharmacol. Toxicol. 2003, 93, 186–190. DOI: 10.1034/j.1600-0773.2003.930406.x.
  • Sciullo, E. M.; Vogel, C. F.; Wu, D.; Murakami, A.; Ohigashi, H.; Matsumura, F. Effects of Selected Food Phytochemicals in Reducing the Toxic Actions of TCDD and p, p0-DDT in U937 Macrophages. Arch. Toxicol. 2010, 84, 957–966. DOI: 10.1007/s00204-010-0592-y.
  • Mukai, R.; Shirai, Y.; Saito, N.; Fukuda, I.; Nishiumi, S.; Yoshida, K.; Ashida, H. Suppression Mechanisms of Flavonoids on Aryl Hydrocarbon Receptor-Mediated Signal Transduction. Arch. Biochem. Biophys. 2010, 501, 134–141. DOI: 10.1016/j.abb.2010.05.002.
  • Kaneto, H.; Nakatani, Y.; Kawamori, D.; Miyatsuka, T.; Matsuoka, T. A.; Matsuhisa, M.; Yamasaki, Y. Role of Oxidative Stress, Endoplasmic Reticulum Stress, and c.Jun N-Terminal Kinase in Pancreatic β-Cell Dysfunction and Insulin Resistance. Int. J. Biochem. Cell Biol. 2006, 38, 782–793. DOI: 10.1016/j.biocel.2006.01.004.
  • Reichart, J. F.; Dalton, T. P.; Shertzer, H. G.; Puga, A. Induction of Oxidative Stress Responses by Dioxin and Other Ligands of the Aryl Hydrocarbon Receptor. Dose Response 2006, 3, 306–331.
  • Senft, A. P.; Dalton, T. P.; Nebert, D. W.; Genter, M. B.; Hutchinson, R. J.; Shertzer, H. G. Dioxin Increases Reactive Oxygen Production in Mouse Liver Mitochondria. Toxicol. Appl. Pharmacol. 2002, 185, 74–75.
  • Shertzer, H. G.; Genter, M. B.; Shen, D.; Nebert, D. W.; Chen, Y.; Dalton, T. P. TCDD Decreases ATP Levels and Increases Reactive Oxygen Production through Changes in Mitochondrial F0F1-ATP Synthase and Ubiquinone. Toxicol. Appl. Pharmacol. 2006, 217, 363–374. DOI: 10.1016/j.taap.2006.09.014.
  • Rizzo, M.; Ventrice, D.; Giannetto, F.; Cirinnà, S.; Santagati, N. A.; Procopio, A.; Mollace, V.; Muscoli, C. Antioxidant Activity of Oleuropein and Semisynthetic Acetyl-Derivatives Determined by Measuring Malondialdehyde in Rat Brain. J. Pharm. Pharmacol. 2017, 69, 1502–1512. DOI: 10.1111/jphp.12807.
  • Bech, K.; Damsbo, P.; Eldrup, E.; Beck-Nielsen, H.; Røder, M. E.; Hartling, S. G.; Vølund, A.; Madsbad, S. Beta-Cell Function and Glucose and Lipid Oxidation in Graves’ Disease. Clin. Endocrinol. 1996, 44, 59–66. DOI: 10.1046/j.1365-2265.1996.636458.x.
  • Thorens, B. GLUT2 in Pancreatic and Extra-Pancreatic Gluco-Detection. Mol. Membr. Biol. 2001, 18, 265–273. DOI: 10.1080/09687680110100995.
  • Gremlich, S.; Roduit, R.; Thorens, B. Dexamethasone Induces Posttranslational Degradation of GLUT2 and Inhibition of Insulin Secretion in Isolated Pancreatic Beta Cells. Comparison with the Effects of Fatty Acids. J. Biol. Chem. 1997, 272, 3216–3222. DOI: 10.1074/jbc.272.6.3216.
  • Kasanicki, M. A.; Pilch, P. F. Regulation of Glucose-Transporter Function. Diabetes Care 1990, 13, 219–227. DOI: 10.2337/diacare.13.3.219.
  • Idris, I.; Donnelly, R. Sodium-Glucose Co-Transporter-2 Inhibitors: An Emerging New Class of Oral Antidiabetic Drug. Diabetes Obes. Metab. 2009, 11, 79–88. DOI: 10.1111/j.1463-1326.2008.00982.x.
  • Unger, R. H. Diabetic Hyperglycemia: Link to Impaired Glucose Transport in Pancreatic Beta Cells. Science 1991, 251, 1200–1205. DOI: 10.1126/science.2006409.
  • Johnson, J. H.; Ogawa, A.; Chen, L.; Orci, L.; Newgard, C. B.; Alam, T.; Unger, R. H. Underexpression of Beta Cell High Km Glucose Transporters in Noninsulin-Dependent Diabetes. Science 1990, 250, 546–549. DOI: 10.1126/science.2237405.
  • Thorens, B.; Wu, Y.-J.; Leahy, J. L.; Weir, G. C. The Loss of GLUT2 Expression by Glucose-Unresponsive Beta Cells of db/db Mice is Reversible and is Induced by the Diabetic Environment. J. Clin. Invest. 1992, 90, 77–85. DOI: 10.1172/JCI115858.
  • Kim, Y. H.; Shim, Y. J.; Shin, Y. J.; Sul, D.; Lee, E.; Min, B. H. 2,3,7,8-tetrachlorodibenzo-p-Dioxin (TCDD) Induces Calcium Influx through T-Type Calcium Channel and Enhances Lysosomal Exocytosis and Insulin Secretion in INS-1 Cells. Int. J. Toxicol. 2009, 28, 151–161. DOI: 10.1177/1091581809336885.
  • Skelin, M.; Rupnik, M.; Cencic, A. Pancreatic Beta Cell Lines and Their Applications in Diabetes Mellitus Research. ALTEX 2010, 27, 105–113.
  • Poitout, V.; Olson, L. K.; Robertson, R. P. Insulin-Secreting Cell Lines: classification, Characteristics and Potential Applications. Diabetes Metab. 1996, 22, 7–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.