Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 8
204
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Application of ANN and SVM for prediction nutrients in rivers

ORCID Icon
Pages 867-873 | Received 25 Jan 2021, Accepted 15 May 2021, Published online: 01 Jun 2021

References

  • Lintern, A.; Webb, J. A.; Ryu, D.; Liu, S.; Bende-Michl, U.; Waters, D.; Leahy, P.; Wilson, P.; Western, A. W. Key Factors Influencing Differences in Stream Water Quality across Space. Wiley Interdiscip. Rev. Water 2018, 5, e1260.
  • EEA. Nutrient enrichment and eutrophication in Europe’s seas: Moving towards a healthy marine environment. 2019; 50. pp.
  • EU Water Framework Directive 2000/60/EC. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Commun. 2017,
  • European Commission. European Nitrate Directive 91/676/EEC. Off. J. Eur. Commun. 1991, L 375(31.12.1991), 1–8.
  • UN. In Transforming Our World by 2030: A New Agenda For Global Action, 2015.
  • Ye, Z.; Yang, J.; Zhong, N.; Tu, X.; Jia, J.; Wang, J. Tackling Environmental Challenges in Pollution Controls Using Artificial Intelligence: A Review. Sci. Total Environ. 2020, 699, 134279. DOI: 10.1016/j.scitotenv.2019.134279.
  • Maier, H. R.; Jain, A.; Dandy, G. C.; Sudheer, K. P. Methods Used for the Development of Neural Networks for the Prediction of Water Resource Variables in River Systems: Current Status and Future Directions. Environ. Model. Softw. 2010, 25, 891–909. DOI: 10.1016/j.envsoft.2010.02.003.
  • Mitrovic, T.; Ristic, M.; Peric-Grujic, A.; Lazovic, S. ANN Prediction of Decolourisation Efficiency of Organic Dyes in Wastewater by Plasma Needle. J. Serbian Chem. Soc. 2020, 85, 6, 831-844.
  • Šiljić Tomić, A.; Antanasijević, D.; Ristić, M.; Perić-Grujić, A.; Pocajt, V. A Linear and Non-Linear Polynomial Neural Network Modeling of Dissolved Oxygen Content in Surface Water: Inter- and Extrapolation Performance with Inputs’ Significance Analysis. Sci. Total Environ. 2018, 610-611, 1038–1046. DOI: 10.1016/j.scitotenv.2017.08.192.
  • Rajaee, T.; Khani, S.; Ravansalar, M. Artificial Intelligence-Based Single and Hybrid Models for Prediction of Water Quality in Rivers: A Review. Chemometrics Intell. Lab. Syst. 2020, 200, 103978. DOI: 10.1016/j.chemolab.2020.103978.
  • Mitrović, T.; Antanasijević, D.; Lazović, S.; Perić-Grujić, A.; Ristić, M. Virtual Water Quality Monitoring at Inactive Monitoring Sites Using Monte Carlo Optimized Artificial Neural Networks: A Case Study of Danube River (Serbia). Sci. Total Environ. 2019, 654, 1000–1009. DOI: 10.1016/j.scitotenv.2018.11.189.
  • Noori, N.; Kalin, L.; Isik, S. Water Quality Prediction Using SWAT-ANN Coupled Approach. J. Hydrol. 2020, 590, 3, 125220.
  • Wagh, V.; Panaskar, D.; Muley, A.; Mukate, S.; Gaikwad, S. Neural Network Modelling for Nitrate Concentration in Groundwater of Kadava River Basin, Nashik, Maharashtra, India. Groundw. Sustain. Dev. 2018, 7, 436–445. DOI: 10.1016/j.gsd.2017.12.012.
  • Melesse, A. M.; Ahmad, S.; McClain, M. E.; Wang, X.; Lim, Y. H. Suspended Sediment Load Prediction of River Systems: An Artificial Neural Network Approach. Agric. Water Manag. 2011, 98, 855–866. DOI: 10.1016/j.agwat.2010.12.012.
  • Markus, M.; Tsai, C. W. S.; Demissie, M. Uncertainty of Weekly Nitrate-Nitrogen Forecasts Using Artificial Neural Networks. J. Environ. Eng. 2003, 129, 267–274. DOI: 10.1061/(ASCE)0733-9372(2003)129:3(267).
  • Antanasijević, D.; Pocajt, V.; Perić-Grujić, A.; Ristić, M. Modelling of Dissolved Oxygen in the Danube River Using Artificial Neural Networks and Monte Carlo Simulation Uncertainty Analysis. J. Hydrol 2014, 519, 1895–1907. DOI: 10.1016/j.jhydrol.2014.10.009.
  • Tan, G.; Yan, J.; Gao, C.; Yang, S. Prediction of Water Quality Time Series Data Based on Least Squares Support Vector Machine, Procedia Eng. 2012, 31, 1194-1199.
  • Forough, K.-T.; Mousavi, S. F.; Khaledian, M.; Yousefi-Falakdehi, O.; Norouzi-Masir, M. Prediction of Water Quality Index by Support Vector Machine: A Case Study in the Sefidrud Basin, Northern Iran. Water Resour. 2019, 46, 112–116.
  • Kisi, O.; Parmar, K. S. Application of Least Square Support Vector Machine and Multivariate Adaptive Regression Spline Models in Long Term Prediction of River Water Pollution. J. Hydrol. 2016, 534, 104–112. DOI: 10.1016/j.jhydrol.2015.12.014.
  • Najah, A.; El-Shafie, A.; Karim, O. A.; Jaafar, O.; El-Shafie, A. H. An Application of Different Artificial Intelligences Techniques for Water Quality Prediction. Int. J. Phys. Sci. 2011, 6, 5298–5308.
  • Singh, K. P.; Basant, N.; Gupta, S. Support Vector Machines in Water Quality Management. Anal. Chim. Acta 2011, 703, 152–162. DOI: 10.1016/j.aca.2011.07.027.
  • Arheimer, B.; Lidén, R. Nitrogen and Phosphorus Concentrations from Agricultural catchments - Influence of Spatial and Temporal Variables. J. Hydrol. 2000, 227, 140–159. DOI: 10.1016/S0022-1694(99)00177-8.
  • McKergow, L. A.; Weaver, D. M.; Prosser, I. P.; Grayson, R. B.; Reed, A. E. G. Before and after Riparian Management: Sediment and Nutrient Exports from a Small Agricultural Catchment, Western Australia. J. Hydrol. 2003, 270, 253–272. DOI: 10.1016/S0022-1694(02)00286-X.
  • Howarth, R. W.; Sharpley, A.; Walker, D. Sources of Nutrient Pollution to Coastal Waters in the United States: Implications for Achieving Coastal Water Quality Goals. Estuaries 2002, 25, 656–676. DOI: 10.1007/BF02804898.
  • Eurostat, H.-E. https://ec.europa.eu/eurostat/home. ? (accessed Aug. 2020).
  • Stamenković, L. J.; Antanasijević, D. Z.; Ristić, M. Đ.; Perić-Grujić, A. A.; Pocajt, V. V. Modeling of Methane Emissions Using Artificial Neural Network Approach. J. Serb. Chem. Soc. 2015, 80, 421–433. DOI: 10.2298/JSC020414110S.
  • Antanasijević, D.; Pocajt, V.; Ristić, M.; Perić-Grujić, A. Modeling of Energy Consumption and Related GHG (Greenhouse Gas) Intensity and Emissions in Europe Using General Regression Neural Networks. Energy 2015, 84, 816–824. DOI: 10.1016/j.energy.2015.03.060.
  • Stamenković, L. J.; Antanasijević, D. Z.; Ristić, M.; Perić-Grujić, A. A.; Pocajt, V. V. Prediction of Nitrogen Oxides Emissions at the National Level Based on Optimized Artificial Neural Network Model. Air Qual. Atmos. Health 2017, 10, 15–23. DOI: 10.1007/s11869-016-0403-6.
  • Singh, K. P.; Basant, A.; Malik, A.; Jain, G. Artificial Neural Network Modeling of the River Water quality-A Case Study. Ecol. Modell. 2009, 220, 888–895. DOI: 10.1016/j.ecolmodel.2009.01.004.
  • May, R. J.; Maier, H. R.; Dandy, G. C.; Fernando, T. M. K. G. Non-Linear Variable Selection for Artificial Neural Networks Using Partial Mutual Information. Environ. Model. Softw. 2008, 23, 1312–1326. DOI: 10.1016/j.envsoft.2008.03.007.
  • Chen, Y.-H.; Chang, F. J. Evolutionary Artificial Neural Networks for Hydrological Systems Forecasting. J. Hydrol. 2009, 367, 125–137. DOI: 10.1016/j.jhydrol.2009.01.009.
  • Kalogirou, S. A. Artificial Intelligence for the Modeling and Control of Combustion Processes: A Review. Prog. Energy Combust. Sci. 2003, 29, 515–566. DOI: 10.1016/S0360-1285(03)00058-3.
  • Palani, S.; Liong, S. Y.; Tkalich, P. An ANN Application for Water Quality Forecasting. Mar. Pollut. Bull. 2008, 56, 1586–1597. DOI: 10.1016/j.marpolbul.2008.05.021.
  • Wu, W.; Dandy, G. C.; Maier, H. R. Protocol for Developing ANN Models and Its Application to the Assessment of the Quality of the ANN Model Development Process in Drinking Water Quality Modelling. Environ. Model. Softw. 2014, 54, 108–127. DOI: 10.1016/j.envsoft.2013.12.016.
  • Gümrah, F.; Öz, B.; Güler, B.; Evin, S. The Application of Artificial Neural Networks for the Prediction of Water Quality of Polluted Aquifer. Water. Air. Soil Pollut. 2000, 119, 275–294. DOI: 10.1023/A:1005165315197.
  • Vapnik, V. N. The Nature of Statistical Learning Theory. 1995.
  • Sretenović, A. A.; Jovanović, R.; Novaković, V. M.; Nord, N. M.; Živković, B. D. Support Vector Machine for the Prediction of Heating Energy Use. Therm. Sci. 2018, 22, S1171-S1181.
  • Berbić, J.; Ocvirk, E.; Carević, D.; Lončar, G. Application of Neural Networks and Support Vector Machine for Significant Wave Height Prediction. Oceanologia 2017, 59, 331–349. DOI: 10.1016/j.oceano.2017.03.007.
  • Smola, A. J.; Schölkopf, B. A Tutorial on Support Vector Regression. Statist. Comput. 2004, 14, 199–222. DOI: 10.1023/B:STCO.0000035301.49549.88.
  • Lu, W. Z.; Wang, W. J. Potential Assessment of the “Support Vector Machine” Method in Forecasting Ambient Air Pollutant Trends. Chemosphere 2005, 59, 693–701. DOI: 10.1016/j.chemosphere.2004.10.032.
  • IBM Corp. IBM SPSS Statistics for Windows, Version 19. 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.