Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 12
341
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Neuromotor activity inhibition in zebrafish early-life stages after exposure to environmental relevant concentrations of caffeine

ORCID Icon, ORCID Icon, , ORCID Icon, , , & show all
Pages 1306-1315 | Received 04 Aug 2020, Accepted 24 Sep 2021, Published online: 18 Oct 2021

References

  • Scott, G. R.; Sloman, K. A. The Effects of Environmental Pollutants on Complex Fish Behaviour: Integrating Behavioural and Physiological Indicators of Toxicity. Aquat. Toxicol. 2004, 68, 369–392.
  • Brodin, T.; Piovano, S.; Fick, J.; Klaminder, J.; Heynen, M.; Heynen, M.; Jonsson, M. Ecological Effects of Pharmaceuticals in Aquatic Systems — Impacts through Behavioural Alterations. Phil. Trans. R Soc. B. 2014, 369, 20130580. DOI: https://doi.org/10.1098/rstb.2013.0580.
  • Rodríguez-Gil, J. L.; Cáceres, N.; Dafouz, R.; Valcárcel, Y. Caffeine and Paraxanthine in Aquatic Systems: Global Exposure Distributions and Probabilistic Risk Assessment. Sci. Total Environ. 2018, 18, 1–15.
  • Heckman, M. A.; Weil, J.; Mejia, E. G. de. Caffeine (1, 3, 7-Trimethylxanthine) in Foods: A Comprehensive Review on Consumption, Functionality, Safety, and Regulatory Matters. J. Food Sci. 2010, 75, 77–87.
  • Lourenção, B. C.; Medeiros, R. A.; Rocha-Filho, R. C.; Mazo, L. H.; Fatibello-Filho, O. Simultaneous Voltammetric Determination of Paracetamol and Caffeine in Pharmaceutical Formulations Using a Boron-Doped Diamond Electrode. Talanta 2009, 78, 748–752. DOI: https://doi.org/10.1016/j.talanta.2008.12.040.
  • Mitchell, D. C.; Knight, C. A.; Hockenberry, J.; Teplansky, R.; Hartman, T. J. Beverage Caffeine Intakes in the U.S. Food Chem. Toxicol. 2014, 63, 136–142. DOI: https://doi.org/10.1016/j.fct.2013.10.042.
  • Gu, L.; Gonzalez, F. J.; Kalow, W.; Tang, B. K. Biotransformation of Caffeine, Paraxanthine, Theobromine and Theophylline by cDNA-Expressed Human CYP1A2 and CYP2E1. Pharmacogenetics 1992, 2, 73–77.
  • Conley, J. M.; Symes, S. J.; Schorr, M. S.; Richards, S. M. Spatial and Temporal Analysis of Pharmaceutical Concentrations in the Upper Tennessee River Basin. Chemosphere 2008, 73, 1178–1187. DOI: https://doi.org/10.1016/j.chemosphere.2008.07.062.
  • Benotti, M. J.; Brownawell, B. J. Microbial Degradation of Pharmaceuticals in Estuarine and Coastal Seawater. Environ. Pollut. 2009, 157, 994–1002.
  • Spongberg, A. L.; Witter, J. D.; Acuña, J.; Vargas, J.; Murillo, M.; Umaña, G.; Gómez, E.; Perez, G. Reconnaissance of Selected PPCP Compounds in Costa Rican Surface Waters. Water Res. 2011, 45, 6709–6717.
  • Sodré, F. F.; Santana, J. S.; Sampaio, T. R.; Brandão, C. C. S. Seasonal and Spatial Distribution of Caffeine, Atrazine, Atenolol and Deet in Surface and Drinking Waters from the Brazilian Federal District. J. Braz. Chem. Soc. 2018, 29, 1854–1865.
  • Asghar, M. A.; Zhu, Q.; Sun, S.; Peng, Y.; Shuai, Q. Suspect Screening and Target Quantification of Human Pharmaceutical Residues in the Surface Water of Wuhan, China, Using UHPLC-Q-Orbitrap HRMS. Sci. Total Environ. 2018, 635, 828–837.
  • Buerge, I. J.; Poiger, T.; Müller, M. D.; Buser, H. R. Caffeine, an Anthropogenic Marker for Wastewater Contamination of Surface Waters. Environ. Sci. Technol. 2003, 37, 691–700. DOI: https://doi.org/10.1021/es020125z.
  • Gardinali, P. R.; Zhao, X. Trace Determination of Caffeine in Surface Water Samples by Liquid chromatography - Atmospheric Pressure Chemical ionization - Mass Spectrometry (LC-APCI-MS). Environ. Int. 2002, 28, 521–528.
  • Knee, K. L.; Gossett, R.; Boehm, A. B.; Paytan, A. Caffeine and Agricultural Pesticide Concentrations in Surface Water and Groundwater on the North Shore of Kauai (Hawaii, USA). Mar. Pollut. Bull. 2010, 60, 1376–1382. DOI: https://doi.org/10.1016/j.marpolbul.2010.04.019.
  • Kolpin, D. W.; Furlong, E. T.; Meyer, M. T.; Thurman, E. M.; Zaugg, S. D.; Barber, L. B.; Buxton, H. T. Pharmaceuticals, Hormones and Other Organic Wastewater Contaminants in US. streams, 1999-2000: A National Reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211.
  • Dsikowitzky, L.; Sträter, M.; Dwiyitno; Ariyani, F.; Irianto, H. E.; Schwarzbauer, J. First Comprehensive Screening of Lipophilic Organic Contaminants in Surface Waters of the Megacity Jakarta, Indonesia. Mar. Pollut. Bull. 2016, 110, 654–664.
  • Wilkins, R. M.; Metcalfe, R. J. Toxicity of Soil Applied Herbicides to Brine Shrimp Larvae (Artemia Salina) and Synergism with Other Pesticides. Bright. Crop Prot. Conf. weeds Proc. an Int. Conf. Bright. UK 1993, 22-25 Nov, 1, 163–168.
  • Zarrelli, A.; DellaGreca, M.; Iesce, M. R.; Lavorgna, M.; Temussi, F.; Schiavone, L.; Criscuolo, E.; Parrella, A.; Previtera, L.; Isidori, M. Ecotoxicological Evaluation of Caffeine and Its Derivatives from a Simulated Chlorination Step. Sci Total Environ . 2014, 470-471, 453–458. DOI: https://doi.org/10.1016/j.scitotenv.2013.10.005.
  • Pires, A.; Almeida, Â.; Correia, J.; Calisto, V.; Schneider, R. J.; Esteves, V. I.; Soares, A. M. V. M.; Figueira, E.; Freitas, R. Long-Term Exposure to Caffeine and Carbamazepine: Impacts on the Regenerative Capacity of the Polychaete Diopatra Neapolitana. Chemosphere 2016, 146, 565–573. DOI: https://doi.org/10.1016/j.chemosphere.2015.12.035.
  • Boehmler, W.; Petko, J.; Woll, M.; Frey, C.; Thisse, B.; Thisse, C.; Canfield, V. A.; Levenson, R. Identification of Zebrafish A2 Adenosine Receptors and Expression in Developing Embryos. Gene Expr. Patterns 2009, 9, 144–151. DOI: https://doi.org/10.1016/j.gep.2008.11.006.
  • Wakisaka, N.; Miyasaka, N.; Koide, T.; Masuda, M.; Hiraki-Kajiyama, T.; Yoshihara, Y. An Adenosine Receptor for Olfaction in Fish. Curr. Biol. 2017, 27, 1437–1447.e4.
  • Fraker, S. L.; Smith, G. R. Direct and Interactive Effects of Ecologically Relevant Concentrations of Organic Wastewater Contaminants on Rana Pipiens Tadpoles. Environ. Toxicol. 2004, 19, 250–256. DOI: https://doi.org/10.1002/tox.20017.
  • Faria, M.; Fuertes, I.; Prats, E.; Abad, J. L.; Padrós, F.; Gomez-Canela, C.; Casas, J.; Estevez, J.; Vilanova, E.; Piña, B.; Raldúa, D. Analysis of the Neurotoxic Effects of Neuropathic Organophosphorus Compounds in Adult Zebrafish. Sci. Rep. 2018, 8, 1–14.
  • d’Amora, M.; Giordani, S. The Utility of Zebrafish as a Model for Screening Developmental Neurotoxicity. Front. Neurosci. 2018, 12, 1–6. DOI: https://doi.org/10.3389/fnins.2018.00976.
  • Prieto, M. J.; Gutierrez, H. C.; Arévalo, R. A.; Chiaramoni, N. S. Valle Alonso, S. del. Effect of Risperidone and Fluoxetine on the Movement and Neurochemical Changes of Zebrafish. Open J. Med. Chem. 2012, 2, 129–138.
  • Howe, K.; Clark, M. D.; Torroja, C. F.; Torrance, J.; Muffato, M.; Collins, J. E.; Humphray, S.; Mclaren, K.; Matthews, L.; Mclaren, S.; et al. Palmer, S.; Gehring, I.; Berger, a.; Dooley, C.M. The Zebrafish Reference Genome Sequence and Its Relationship to the Human Genome. Nature 2013, 496, 498–503. DOI: https://doi.org/10.1038/nature12111.
  • OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test. OECD Guidel. Test. Chem. Sect. 2, OECD Publ. 2013, (July), 1–22.
  • Farias, N.; Oliveira, D.; Oliveira, R.; Sousa-Moura, D.; Carlyle, R.; Oliveira, S.; De; Augusta, M.; Rodrigues, C.; Alexandre, L.; Koppe, C. Exposure to Low Concentration of Fluoxetine Affects Development, Behaviour and Acetylcholinesterase Activity of Zebrafish Embryos. Comp Biochem Physiol C Toxicol Pharmacol. 2019, 215, 1–8. DOI: https://doi.org/10.1016/j.cbpc.2018.08.009.
  • Lin, A. Y. C.; Lin, C. A.; Tung, H. H.; Chary, N. S. Potential for Biodegradation and Sorption of Acetaminophen, Caffeine, Propranolol and Acebutolol in Lab-Scale Aqueous Environments. J. Hazard. Mater. 2010, 183, 242–250.
  • Bruton, T.; Alboloushi, A.; La Garza, B.; De; Kim, B.-O.; Halden, R. U. Fate of Caffeine in the Environment and Ecotoxicological Considerations. In Contaminants of Emerging Concern in the Environment: Ecological and Human Health Considerations; Oxford University Press: Washington, DC, 2013; Vol. 1048, pp. 257–273
  • Lam, M. W.; Young, C. J.; Brain, R. A.; Johnson, D. J.; Hanson, M. L.; Wilson, C. J.; Richards, S. M.; Solomon, K. R.; Mabury, S. A. Aquatic Persistence of Eight Pharmaceuticals in a Microcosm Study. Environ. Toxicol. Chem. 2004, 23, 1431–1440. DOI: https://doi.org/10.1897/03-421.
  • Irons, T. D.; MacPhail, R. C.; Hunter, D. L.; Padilla, S. Acute Neuroactive Drug Exposures Alter Locomotor Activity in Larval Zebrafish. Neurotoxicol. Teratol. 2010, 32, 84–90.
  • Ellman, G. L.; Courtney, K. D.; Andres, V.; Feather-Stone, R. M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95.
  • Bradford, M. Rapid and Sensitive Method for Quantification of Microgram Quantities of Protein Utilizing Principle of Protein-Dye-Binding. Anal. Biochem. 1976, 72, 248–254. DOI: https://doi.org/10.1016/0003-2697(76)90527-3.
  • Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose-response analysis using R. PloS one, 10(12), e0146021.
  • Kimmel, C. B.; Ballard, W. W.; Kimmel, S. R.; Ullmann, B.; Schilling, T. F. Stages of embryonic development of the zebrafish. Developmental Dynamics. 1995, 203(3), 253-310.
  • Teixidó, E.; Piqué, E.; Gómez-Catalán, J.; Llobet, J. M. Assessment of Developmental Delay in the Zebrafish Embryo Teratogenicity Assay. Toxicol. Vitr. 2013, 27, 469–478. DOI: https://doi.org/10.1016/j.tiv.2012.07.010.
  • DeYoung, D. J.; Bantle, J. A.; Hull, M. A.; Burks, S. L. Differences in Sensitivity to Developmental Toxicants as Seen in Xenopus and Pimephales Embryos. Bull. Environ. Contam. Toxicol. 1996, 56, 143–150.
  • Selderslaghs, I. W. T.; Blust, R.; Witters, H. E. Feasibility Study of the Zebrafish Assay as an Alternative Method to Screen for Developmental Toxicity and Embryotoxicity Using a Training Set of 27 Compounds. Reprod. Toxicol. 2012, 33, 142–154.
  • Dubińska-Magiera, M.; Daczewska, M.; Lewicka, A.; Migocka-Patrzałek, M.; Niedbalska-Tarnowska, J.; Jagl, K. Zebrafish: A Model for the Study of Toxicants Affecting Muscle Development and Function. Int. J. Mol. Sci. 2016, 17, 1941–1963.
  • Yeh, C.-H.; Liao, Y.-F.; Chang, C.-Y.; Tsai, J.-N.; Wang, Y.-H.; Cheng, C.-C.; Wen, C.-C.; Chen, Y.-H. Caffeine Treatment Disturbs the Angiogenesis of Zebrafish Embryos. Drug Chem. Toxicol. 2012, 35, 361–365.
  • Lashein, F. E.-D. M.; Seleem, A. A.; Ahmed, A. A. Effect of Caffeine and Retinoic Acid on Skeleton of Mice Embryos. J. Basic Appl. Zool. 2016, 75, 36–45. DOI: https://doi.org/10.1016/j.jobaz.2016.06.003.
  • Schmidt, R. J.; Romitti, P. A.; Burns, T. L.; Browne, M. L.; Druschel, C. M.; Olney, R. S, the National Birth Defects Prevention Study Maternal Caffeine Consumption and Risk of Neural Tube Defects. Birth Defect. Res. A. 2009, 85, 879–889. DOI: https://doi.org/10.1002/bdra.20624.
  • Selderslaghs, I. W. T.; Rompay, A. R.; Van; Coen, W.; De; Witters, H. E. Development of a Screening Assay to Identify Teratogenic and Embryotoxic Chemicals Using the Zebrafish Embryo. Reprod. Toxicol. 2009, 28, 308–320.
  • Chen, Y. H.; Huang, Y. H.; Wen, C. C.; Wang, Y. H.; Chen, W. L.; Chen, L. C.; Tsay, H. J. Movement Disorder and Neuromuscular Change in Zebrafish Embryos after Exposure to Caffeine. Neurotoxicol. Teratol. 2008, 30, 440–447.
  • Mustard, J. A. The Buzz on Caffeine in Invertebrates: Effects on Behavior and Molecular Mechanisms. Cell. Mol. Life Sci. 2014, 71, 1375–1382.
  • Behra, M.; Cousin, X.; Bertrand, C.; Vonesch, J.-L.; Biellmann, D.; Chatonnet, A.; Strähle, U. Acetylcholinesterase is Required for Neuronal and Muscular Development in the Zebrafish Embryo. Nat. Neurosci. 2002, 5, 111–118.
  • Li, Z.; Lu, G.; Yang, X.; Wang, C. Single and Combined Effects of Selected Pharmaceuticals at Sublethal Concentrations on Multiple Biomarkers in Carassius auratus. Ecotoxicology 2012, 21, 353–361. DOI: https://doi.org/10.1007/s10646-011-0796-9.
  • Tierney, K. B. Behavioural Assessments of Neurotoxic Effects and Neurodegeneration in Zebrafish. Biochim. Biophys. Acta Mol. Basis Dis. 2011, 1812, 381–389. DOI: https://doi.org/10.1016/j.bbadis.2010.10.011.
  • López-Cruz, L.; Salamone, J. D.; Correa, M. Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression. Front. Pharmacol. 2018, 9, 1–14. DOI: https://doi.org/10.3389/fphar.2018.00526.
  • Daly, J.; Shi, D. The Role of Adenosine Receptors in the Central Action of Caffeine. Caffeine Behav. 1994, 7, 201–213.
  • Shi, D.; Nikodijević, O.; Jacobson, K. A.; Daly, J. W. Chronic Caffeine Alters the Density of Adenosine, Adrenergic, Cholinergic, GABA, and Serotonin Receptors and Calcium Channels in Mouse Brain. Cell. Mol. Neurobiol. 1993, 13, 247–261.
  • Karadsheh, N.; Kussie, P.; Linthicum, D. S. Inhibition of Acetylcholinesterase by Caffeine, Anabasine, Methyl Pyrrolidine and Their Derivatives. Toxicol. Lett. 1991, 55, 335–342.
  • Padilla, S.; Hunter, D. L.; Padnos, B.; Frady, S.; MacPhail, R. C. Assessing Locomotor Activity in Larval Zebrafish: Influence of Extrinsic and Intrinsic Variables. Neurotoxicol. Teratol. 2011, 33, 624–630.
  • Kienle, C.; Köhler, H. R.; Gerhardt, A. Behavioural and Developmental Toxicity of Chlorpyrifos and Nickel Chloride to Zebrafish (Danio rerio) Embryos and Larvae. Ecotoxicol. Environ. Saf. 2009, 72, 1740–1747.
  • Neale, P. A.; Munz, N. A.; Aїt-Aїssa, S.; Altenburger, R.; Brion, F.; Busch, W.; Escher, B. I.; Hilscherová, K.; Kienle, C.; Novák, J.; et al. Integrating Chemical Analysis and Bioanalysis to Evaluate the Contribution of Wastewater Effluent on the Micropollutant Burden in Small Streams. Sci. Total Environ. 2017, 576, 785–795.
  • Tran, S.; Fulcher, N.; Nowicki, M.; Desai, P.; Tsang, B.; Facciol, A.; Chow, H.; Gerlai, R. Time-Dependent Interacting Effects of Caffeine, Diazepam, and Ethanol on Zebrafish Behaviour. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2017, 75, 16–27. DOI: https://doi.org/10.1016/j.pnpbp.2016.12.004.
  • Santos, L. C.; Ruiz-Oliveira, J.; Oliveira, J. J.; Silva, P. F.; Luchiari, A. C. Irish Coffee: Effects of Alcohol and Caffeine on Object Discrimination in Zebrafish. Pharmacol. Biochem. Behav. 2016, 143, 34–43.
  • Klüver. Fish Embryo Toxicity Test: Identi fi Cation of Compounds with Weak Toxicity and Analysis of Behavioral Effects to Improve Prediction of Acute Toxicity for Neurotoxic Compounds. 2015.
  • Ladu, F.; Mwaffo, V.; Li, J.; Macrì, S.; Porfiri, M. Acute Caffeine Administration Affects Zebrafish Response to a Robotic Stimulus. Behav. Brain Res. 2015, 289, 48–54.
  • Steele, W. B.; Mole, R. A.; Brooks, B. W. Experimental Protocol for Examining Behavioral Response Profiles in Larval Fish: Application to the Neuro-Stimulant Caffeine. J. Vis. Exp 2018, 2018, 1–9.
  • Maximino, C.; Silva, A. W. B.; da; Gouveia, A.; Herculano, A. M. Pharmacological Analysis of Zebrafish (Danio rerio) Scototaxis. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2011, 35, 624–631. DOI: https://doi.org/10.1016/j.pnpbp.2011.01.006.
  • Richendrfer, H.; Pelkowski, S. D.; Colwill, R. M.; Creton, R. On the Edge: Pharmacological Evidence for Anxiety-Related Behavior in Zebrafish Larvae. Behav. Brain Res. 2012, 228, 99–106.
  • Egan, R. J.; Bergner, C. L.; Hart, P. C.; Cachat, J. M.; Canavello, P. R.; Elegante, M. F.; Elkhayat, S. I.; Bartels, B. K.; Tien, A. K.; Tien, D. H.; et al. Understanding Behavioral and Physiological Phenotypes of Stress and Anxiety in Zebrafish. Behav. Brain Res. 2009, 205, 38–44.
  • Steenbergen, P. J.; Richardson, M. K.; Champagne, D. L. Patterns of Avoidance Behaviours in the Light/Dark Preference Test in Young Juvenile Zebrafish: A Pharmacological Study. Behav. Brain Res. 2011, 222, 15–25.
  • Wong, K.; Elegante, M.; Bartels, B.; Elkhayat, S.; Tien, D.; Roy, S.; Goodspeed, J.; Suciu, C.; Tan, J.; Grimes, C.; et al. Analyzing Habituation Responses to Novelty in Zebrafish (Danio rerio). Behav. Brain Res. 2010, 208, 450–457.
  • Scott, P. D.; Bartkow, M.; Blockwell, S. J.; Coleman, H. M.; Khan, S. J.; Lim, R.; McDonald, J. A.; Nice, H.; Nugegoda, D.; Pettigrove, V.; et al. A National Survey of Trace Organic Contaminants in Australian Rivers. J. Environ. Qual. 2014, 43, 1702–1712. DOI: https://doi.org/10.2134/jeq2014.01.0012.
  • Campanha, M. B.; Awan, A. T.; Sousa, D. N. R.; de; Grosseli, G. M.; Mozeto, A. A.; Fadini, P. S. A 3-Year Study on Occurrence of Emerging Contaminants in an Urban Stream of São Paulo State of Southeast Brazil. Environ. Sci. Pollut. Res. 2015, 22, 7936–7947. DOI: https://doi.org/10.1007/s11356-014-3929-x.
  • Chau, H. T. C.; Kadokami, K.; Duong, H. T.; Kong, L.; Nguyen, T. T.; Nguyen, T. Q.; Ito, Y. Occurrence of 1153 Organic Micropollutants in the Aquatic Environment of Vietnam. Environ. Sci. Pollut. Res. Int. 2018, 25, 7147–7156.
  • French, V. A.; Codi King, S.; Kumar, A.; Northcott, G.; McGuinness, K.; Parry, D. Characterisation of Microcontaminants in Darwin Harbour, a Tropical Estuary of Northern Australia Undergoing Rapid Development. Sci. Total Environ. 2015, 536, 639–647. DOI: https://doi.org/10.1016/j.scitotenv.2015.07.114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.