Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 3
247
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Investigating triple superphosphate for lead removal from aqueous solutions

, ORCID Icon, &
Pages 167-173 | Received 19 Nov 2021, Accepted 12 Feb 2022, Published online: 22 Feb 2022

References

  • Bulut, Y.; Baysal, Z. Removal of Pb (II) from Wastewater Using Wheat Bran. J. Environ. Manage. 2006, 78, 107–113.
  • Douay, F.; Roussel, H.; Fourrier, H.; Heyman, C.; Château, G. Investigation of Heavy Metal Concentrations on Urban Soils, Dust and Vegetables Nearby a Former Smelter Site in Mortagne du Nord, Northern France. J. Soils Sediments 2007, 7, 143–146. DOI: https://doi.org/10.1065/jss2007.02.205.
  • Hwang, P. G.; Shin, I. S.; Eu, M. C.; Choi, C. H.; Lee, S. M. Characteristics of Heavy Metal Removal Using Iron-Coated Starfish. KSWST Jour. Wat. Treat. 2004, 12, 19–26.
  • Basta, N. T.; McGowen, S. L. Evaluation of Chemical Immobilization Treatments for Reducing Heavy Metal Transport in a Smelter Contaminated Soil. Environ. Pollut. 2004, 127, 73–82. DOI: https://doi.org/10.1016/S0269-7491(03)00250-1.
  • Chen, S.; Xu, M.; Ma, Y.; Yang, J. Evaluation of Different Phosphate Amendments on Availability of Metals in Contaminated Soil. Ecotoxicol. Environ. Saf. 2007, 67, 278–285.
  • Cotter-Howells, J.; Caporn, S. Remediation of Contaminated Land by Formation of Heavy Metal Phosphates. Appl. Geochem. 1996, 11, 335–342. DOI: https://doi.org/10.1016/0883-2927(95)00042-9.
  • Hafsteinsdottir, E. G.; Camenzuli, D.; Rocavert, A. L.; Walworth, J.; Gore, D. B. Chemical Immobilization of Metals and Metalloids by Phosphates. Appl. Geochem. 2015, 59, 47–62. DOI: https://doi.org/10.1016/j.apgeochem.2015.03.014.
  • Hettiarachchi, G. M.; Pierzynski, G. M.; Ransom, M. D. In Situ Stabilization of Soil Lead Using Phosphorus and Manganese Oxide. Environ. Sci. Technol. 2000, 34, 4614–4619. [Database] DOI: https://doi.org/10.1021/es001228p.
  • Hettiarachchi, G. M.; Pierzynski, G. M.; Ransom, M. D. In Situ Stabilization of Soil Lead Using Phosphorus. J. Environ. Qual. 2001, 30, 1214–1221.
  • Kaya, E.; Regan, R. W.; Sr,; Osseo-Asare, K. Thermodynamic Equilibrium of Lead and Iron with Triple Superphosphate. Trans. Am. Foundrymen's Soc. 1996, 104, 651–658.
  • Labgairi, K.; Borji, A.; Kaddami, M.; Jourani, A. Kinetic Study of Calcium Phosphate Precipitation in the System H3PO4-Ca(OH)2-H2O at 30 °C. Int. J. Chem. Eng. 2020, 2020, 1–9. DOI: https://doi.org/10.1155/2020/2893298.
  • Liang, Y.; Wang, X. C.; Cao, X. D.; Zhao, L. Immobilization of Pb, Cu and Zn in a Multi-Metal Contaminated Soil Amended with Triple Superphosphate Fertilizer and Phosphate Rock Tailing. Adv. Mater. Res., Trans. Tech. 2012, 356, 1716–1718.
  • Ma, Q. Y.; Traina, S. J.; Logan, T. J.; Ryan, J. A. In Situ Lead Immobilization by Apatite. Environ. Sci. Technol. 1993, 27, 1803–1810. DOI: https://doi.org/10.1021/es00046a007.
  • Ma, Q. Y.; Logan, T. J.; Traina, S. J. Lead Immobilization from Aqueous Solutions and Contaminated Soils Using Phosphate Rocks. Environ. Sci. Technol. 1995, 27, 1118–1128.
  • Mignardi, S.; Corami, A.; Ferrini, V. Evaluation of the Effectiveness of Phosphate Treatment for the Remediation of Mine Waste Soils Contaminated with Cd, Cu, Pb, and Zn. Chemosphere 2012, 86, 354–360.
  • Smičiklas, I.; Onjia, A.; Raičević, S.; Janaćković, Đ.; Mitrić, M. Factors Influencing the Removal of Divalent Cations by Hydroxyapatite. J. Hazard. Mater. 2008, 152, 876–884. DOI: https://doi.org/10.1016/j.jhazmat.2007.07.056.
  • Zhang, P.; Ryan, J. A. Formation of Chloropyromorphite from Galena (PbS) in the Presence of Hydroxyapatite. Environ. Sci. Technol. 1999, 33, 618–624. DOI: https://doi.org/10.1021/es980314a.
  • Zhao, Z.; Jiang, G.; Mao, R. Effects of Particle Sizes of Rock Phosphate on Immobilizing Heavy Metals in Lead Zinc Mine Soils. J. Soil Sci. Plant Nutr. 2014, 14, 258–266.
  • Valipour, M.; Shahbazi, K.; Khanmirzaei, A. Chemical Immobilization of Lead, Cadmium, Copper, and Nickel in Contaminated Soils by Phosphate Amendments. Clean Soil. Air. Water 2016, 44, 572–578. DOI: https://doi.org/10.1002/clen.201300827.
  • Lehr, J. R.; Brown, W. E.; Brown, H. E. Chemical Behavior of Monocalcium Phosphate in Soils. Soil Sci. Am. Proc. 1959, 23, 3–12. DOI: https://doi.org/10.2136/sssaj1959.03615995002300010010x.
  • Lindsay, W. L.; Stephenson, H. F. Nature of the Reaction of Monocalcium Phosphate Monohydrate in Soils: I. The Solution That Reacts with the Soil. Soil Sci. Am. Proc. 1959, 23, 12–18. DOI: https://doi.org/10.2136/sssaj1959.03615995002300010012x.
  • Lindsay, W. L.; Stephenson, H. F. Nature of the Reaction of Monocalcium Phosphate Monohydrate in Soils: II. Dissolution and Precipitation Reactions Involving Iron, Aluminum, Manganese and Calcium. Soil Sci. Am. Proc. 1959, 23, 18–22. DOI: https://doi.org/10.2136/sssaj1959.03615995002300010013x.
  • Lindsay, W. L.; Fraiser, A. W.; Stephenson, H. F. Identification of Reaction Products from Phosphate Fertilizers in Soils. Soil Sci. Am. Proc. 1962, 26, 466–472.
  • Lindsay, W. L. Chemical Equilibria in Soils; John Wiley and Sons: New York, 1979; p. 319–449.
  • Ma, L. Q. Factors Influencing the Effectiveness and Stability of Aqueous Lead Immobilization by Hydroxyapatite. Am. Soc. Agron. Crop Sci. Soc. Am. Soil Sci. Soc. Am. 1996, 25, 1420–1429.
  • J.; Obrycki, J. F.; Scheckel, K. G.; Basta, N. T. Soil Solution Interactions May Limit Pb Remediation Using P Amendments in an Urban Soil. Environ. Pollut. 2017, 220, 549–556. DOI: https://doi.org/10.1016/j.envpol.2016.10.002.
  • Scheckel, K. G.; Diamond, G. L.; Burgess, M. F.; Klotzbach, J. M.; Maddaloni, M.; Miller, B. W.; Partridge, C. R.; Serda, S. M. Amending Soils with Phosphate as Means to Mitigate Soil Lead Hazard: A Critical Review of the State of the Science. J. Toxicol. Environ. Health, Part B 2013, 16, 337–380. DOI: https://doi.org/10.1080/10937404.2013.825216.
  • Zheng, G.; Wang, X.; Chen, T.; Yang, J.; Yang, J.; Liu, J.; Shi, X. Passivation of Lead and Cadmium and Increase of the Nutrient Content during Sewage Sludge Composting by Phosphate Amendments. Environ. Res. 2020, 185, 109431.
  • Toy, A. D. F. Phosphorus Chemistry in Everyday Living, 2nd ed; Am. Chem. Soc.: Washington, DC; 1987, p. 80.
  • Varma, S.; Misra, N. P.; Singh, C. P. Hydrolysis of Monocalcium Phosphate Monohydrate in Water. Fertiliz. News 1979, 24, 12–16.
  • US Environmental Pollution Agency (USEPA). Test Methods for Evaluating Solid Waste, Laboratory Manual Physical/Chemical Methods, 1C, 3rd ed; SW-846,1 U.S. Government Printing Office: Washington, DC; 1992.
  • Roine, A. Outokumpu HSC chemistry for windows. Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database; 1994.
  • Vieillard, P.; Tardy, Y.; Nahon, D. Stability Fields of Clays and Aluminum Phosphates; Parageneses in Lateritic Weathering of Argillaceous Phosphatic Sediments. Am. Mineral. 1979, 64, 626–634.
  • Vieillard, P.; Thermochemical, T.,Y. Properties of Phosphates. In Phosphate Minerals, Springer: Berlin, Heidelberg; 1984, pp. 171–198.
  • Wagman, D. D.; Evans, W. H.; Parker, V. B.; Schumm, R. H.; Halow, I.; Bailey, S. M.; Churney, K. L.; Nuttall, R. L. The NBS Tables of Chemical Thermodynamic Properties. Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units. J. Phys. Chem. Ref. Data 1989, 18, 1807–1812. DOI: https://doi.org/10.1063/1.555845.
  • Stanforth, R.; Qiu, J. Effect of Phosphate Treatment on the Solubility of Lead in Contaminated Soil. Env. Geol. 2001, 41, 1–10. DOI: https://doi.org/10.1007/s002540100262.
  • Chen, M.; Ma, L. Q.; Singh, S. P.; Cao, R. X. Melamed, R. Field Demonstration of in Situ Immobilization of Soil Pb Using P Amendments. Adv. Environ. Res. 2003, 8(1), 93–102.
  • Sugiyama, S.; Ichii, T.; Hayashi, H.; Tomida, T. Lead Immobilization by Non-Apatite-Type Calcium Phosphates in Aqueous Solutions. Inorg. Chem. Commun. 2002, 5, 156–158. DOI: https://doi.org/10.1016/S1387-7003(02)00326-X.
  • Cao, X.; Ma, L. Q.; Chen, M.; Singh, S. P.; Harris, W. G. Impacts of Phosphate Amendments on Lead Biogeochemistry at a Contaminated site. Environ. Sci. Technol. 2002, 36(24), 5296–5304.
  • Cao, X.; Ma, L. Q.; Rhue, D. R.; Appel, C. S. Mechanisms of Lead, Copper and Zinc Retention by Phosphate Rock. Environ. Pollut. 2004, 131, 435–444.
  • Chauhan, P.; Chauhan, R. P.; Gupta, M. Estimation of Naturally Occurring Radionuclides in Fertilizers Using Gamma Spectrometry and Elemental Analysis by XRF and XRD Techniques. Microchem. J. 2013, 106, 73–78. DOI: https://doi.org/10.1016/j.microc.2012.05.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.