Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 7
156
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Bioaugmentation of quinoline-degrading bacteria for coking wastewater treatment: performance and microbial community analysis

, &
Pages 601-619 | Received 09 Jan 2022, Accepted 18 Jun 2022, Published online: 07 Jul 2022

References

  • Zhuang, H.; Han, H.; Shan, S. Treatment of Real Coal Gasification Wastewater Using a Novel Integrated System of Anoxic Hybrid Two Stage Aerobic Processes: Performance and the Role of Pure Oxygen Microbubble. Environ. Sci. Pollut. Res. 2016, 23, 11916–11926. DOI: https://doi.org/10.1007/s11356-016-6393-y.
  • Zhang, W.; Wei, C.; Yan, B.; Feng, C.; Zhao, G.; Lin, C.; Yuan, M.; Wu, C.; Ren, Y.; Hu, Y. Identification and Removal of Polycyclic Aromatic Hydrocarbons in Wastewater Treatment Processes from Coke Production Plants. Environ. Sci. Pollut. Res. 2013, 20, 6418–6432. DOI: https://doi.org/10.1007/s11356-013-1697-7.
  • Liu, J.; Ou, H.; Wei, C.; Wu, H.; He, J.; Lu, D. Novel Multistep Physical/Chemical and Biological Integrated Systemfor Coking Wastewater Treatment: Technical and Economic Feasibility. J. Water Process Eng. 2016, 10, 98–103. DOI: https://doi.org/10.1016/j.jwpe.2016.02.007.
  • Deng, X.; Chai, X.; Wei, C.; Fu, L. Rapid Determination of Quinoline and 2-Hydroxyquinoline in Quinoline Biodegradation Process by Tri-Wavelength UV/Vis Spectroscopy. Anal. Sci. 2011, 27, 493–497.
  • Cui, Y.; Kang, W.; Qin, L.; Ma, J.; Liu, X.; Yang, Y. Magnetic Surface Molecularly Imprinted Polymer for Selective Adsorption of Quinoline from Coking Wastewater. Chem. Eng. J. 2020, 397, 125480. DOI: https://doi.org/10.1016/j.cej.2020.125480.
  • Zhou, X.; Wang, G.; Yin, Z.; Chen, J.; Song, J.; Liu, Y. Performance and Microbial Community in a Single-Stage Simultaneous Carbon Oxidation, Partial Nitritation, Denitritation and Anammox System Treating Synthetic Coking Wastewater under the Stress of Phenol. Chemosphere 2020, 243, 125382. DOI: https://doi.org/10.1016/j.chemosphere.2019.125382.
  • Pal, P.; Kumar, R. Treatment of Coke Wastewater: A Critical Review for Developing Sustainable Management Strategies. Sep. Purif. Rev. 2014, 43, 89–123. DOI: https://doi.org/10.1080/15422119.2012.717161.
  • Wang, H.; Guan, Y.; Li, L.; Wu, G. Characteristics of Biological Nitrogen Removal in a Multiple Anoxic and Aerobic Biological Nutrient Removal Process. Biomed Res. Int. 2015, 2015, 1–8.
  • Zhao, G.; Chen, S.; Ren, Y.; Wei, C. Interaction and Biodegradation Evaluate of m -Cresol and Quinoline in co-Exist System. Int. Biodeter. Biodegr. 2014, 86, 252–257. DOI: https://doi.org/10.1016/j.ibiod.2013.09.014.
  • Kong, Q.; Wu, H.; Liu, L.; Zhang, F.; Preis, S.; Zhu, S.; Wei, C. Solubilization of Polycyclic Aromatic Hydrocarbons (PAHs) with Phenol in Coking Wastewater Treatment System: Interaction and Engineering Significance. Sci. Total Environ. 2018, 628–629, 467–473.
  • Ge, H.; Yu, L.; Chen, Z.; Liu, Z.; Liu, H.; Hu, D.; Wang, H.; Cui, Y.; Zhang, W.; Zou, X.; Zhang, Y. Novel Tapered Variable Diameter Biological Fluidized Bed for Treating Pesticide Wastewater with High Nitrogen Removal Efficiency and a Small Footprint. Bioresour. Technol. 2021, 330, 1–12.
  • Wang, H.; Li, P.; Wang, Y.; Liu, L.; Yao, J. Metagenomic Insight into the Bioaugmentation Mechanism of Phanerochaete chrysosporium in an Activated Sludge System Treating Coking Wastewater. J. Hazard. Mater. 2017, 321, 820–829.
  • Wang, J.; Quan, X.; Wu, L.; Qian, Y.; Werner, H. Bioaugmentation as a Tool to Enhance the Removal of Refractory Compound in Coke Plant Wastewater. Process Biochem. 2002, 38, 777–781.
  • Pongkua, W.; Dolphen, R.; Thiravetyan, P. Bioremediation of Gaseous Methyl Tert-Butyl Ether by Combination of Sulfuric Acid Modified Bagasse Activated Carbon-Bone Biochar Beads and Acinetobacter indicus Screened from Petroleum Contaminated Soil. Chemosphere 2020, 239, 124724. DOI: https://doi.org/10.1016/j.chemosphere.2019.124724.
  • Bai, Y.; Sun, Q.; Sun, R.; Wen, D.; Tang, X. Bioaugmentation and Adsorption Treatment of Coking Wastewater Containing Pyridine and Quinoline Using Zeolite-Biological Aerated Filters. Environ. Sci. Technol. 2011, 45, 1940–1948.
  • Zhang, X.; Song, Z.; Tang, Q.; Wu, M.; Zhou, H.; Liu, L.; Qu, Y. Performance and Microbial Community Analysis of Bioaugmented Activated Sludge for Nitrogen-Containing Organic Pollutants Removal. J. Environ. Sci. (China) 2021, 101, 373–381.
  • Raper, E.; Stephenson, T.; Simões, F.; Fisher, R.; Anderson, D. R.; Soares, A. Enhancing the Removal of Pollutants from Coke Wastewater by Bioaugmentation: A Scoping Study. J. Chem. Technol. Biotechnol. 2018, 93, 2535–2543. DOI: https://doi.org/10.1002/jctb.5607.
  • Zhang, J.; Wen, D.; Zhao, C.; Tang, X. Bioaugmentation Accelerates the Shift of Bacterial Community Structure against Shock Load: A Case Study of Coking Wastewater Treatment by Zeolite-Sequencing Batch Reactor. Appl. Microbiol. Biotechnol. 2014, 98, 863–873. DOI: https://doi.org/10.1007/s00253-013-4848-3.
  • Zhu, S.; Wu, H.; Wu, C.; Qiu, G.; Feng, C.; Wei, C. Structure and Function of Microbial Community Involved in a Novel Full-Scale Prefix Oxic Coking Wastewater Treatment O/H/O System. Water Res. 2019, 164, 114963. DOI: https://doi.org/10.1016/j.watres.2019.114963.
  • Liu, Y.; Liu, Y.; Liu, Z.; Zhang, A. Strengthening Effects of Ammonia Nitrogen on the Harmless Biological Treatment of Oily Sludge. Chem. Ecol. 2019, 35, 20–35. DOI: https://doi.org/10.1080/02757540.2018.1528241.
  • Yuan, K.; Li, S.; Zhong, F. Characterization of a Newly Isolated Strain Comamonas sp. ZF-3 Involved in Typical Organics Degradation in Coking Wastewater. Bioresour. Technol. 2020, 304, 123035. DOI: https://doi.org/10.1016/j.biortech.2020.123035.
  • Wang, C.; Zhang, M.; Cheng, F.; Geng, Q. Biodegradation Characterization and Immobilized Strains' Potential for Quinoline Degradation by Brevundimonas sp. K4 Isolated from Activated Sludge of Coking Wastewater. Biosci. Biotechnol. Biochem. 2015, 79, 164–170. DOI: https://doi.org/10.1080/09168451.2014.952615.
  • Mao, Y.; Zhang, X.; Xia, X.; Zhong, H.; Zhao, L. Versatile Aromatic Compound-Degrading Capacity and Microdiversity of Thauera Strains Isolated from a Coking Wastewater Treatment Bioreactor. J. Ind. Microbiol. Biotechnol. 2010, 37, 927–934. DOI: https://doi.org/10.1007/s10295-010-0740-7.
  • Zhu, S.; Liu, D.; Fan, L.; Ni, J. Degradation of Quinoline by Rhodococcus sp QL2 Isolated from Activated Sludge. J. Hazard. Mater. 2008, 160, 289–294.
  • Wang, J.; Quan, X.; Han, L.; Qian, Y.; Werner, H. Microbial Degradation of Quinoline by Immobilized Cells of Burkholderia pickettii. Water Res. 2002, 36, 2288–2296.
  • Bai, Y.; Sun, Q.; Zhao, C.; Wen, D.; Tang, X. Quinoline Biodegradation and Its Nitrogen Transformation Pathway by a Pseudomonas sp. strain. Biodegradation 2010, 21, 335–344.
  • El-Sayed, W. S.; Ibrahim, M. K.; Abu-Shady, M.; El-Beih, F.; Ohmura, N.; Saiki, H.; Ando, A. Isolation and Identification of a Novel Strain of the Genus Ochrobactrum with Phenol-Degrading Activity. J. Biosci. Bioeng. 2003, 96, 310–312.
  • APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, 2012.
  • Wood, R. J.; Bertin, A.; Lee, J.; Bussemaker, M. J. The Application of Flow to an Ultrasonic Horn System: Phenol Degradation and Sonoluminescence. Ultrason. Sonochem. 2021, 71, 105373. DOI: https://doi.org/10.1016/j.ultsonch.2020.105373.
  • Gui, X.; Xu, W.; Cao, H.; Ning, P.; Zhang, Y.; Li, Y.; Sheng, Y. A Novel Phenol and Ammonia Recovery Process for Coal Gasification Wastewater Altering the Bacterial Community and Increasing Pollutants Removal in Anaerobic/Anoxic/Aerobic System. Sci. Total Environ. 2019, 661, 203–211.
  • Xu, W.; Zhang, Y.; Cao, H.; Sheng, Y.; Li, H.; Li, Y.; Zhao, H.; Gui, X. Metagenomic Insights into the Microbiota Profiles and Bioaugmentation Mechanism of Organics Removal in Coal Gasification Wastewater in an Anaerobic/Anoxic/Oxic System by Methanol. Bioresour. Technol. 2018, 264, 106–115. DOI: https://doi.org/10.1016/j.biortech.2018.05.064.
  • Zhang, Y.; Zhang, Y.; Xiong, J.; Zhao, Z.; Chai, T. The Enhancement of Pyridine Degradation by Rhodococcus KDPy1 in Coking Wastewater. Fems Microbiol. Lett. 2019, 366, 1–7.
  • Yang, Z.; Zhou, J.; Xu, Y.; Zhang, Y.; Luo, H.; Chang, K.; Wang, Y. Analysis of the Metabolites of Indole Degraded by an Isolated Acinetobacter pittii L1. Biomed Res. Int. 2017, 2017, 1–10.
  • Xue, L.; Liu, J.; Li, M.; Tan, L.; Ji, X.; Shi, S.; Jiang, B. Enhanced Treatment of Coking Wastewater Containing Phenol, Pyridine, and Quinoline by Integration of an E-Fenton Process into Biological Treatment. Environ. Sci. Pollut. Res. 2017, 24, 9765–9775. DOI: https://doi.org/10.1007/s11356-017-8644-y.
  • Kılıç, N. K. Enhancement of Phenol Biodegradation by Ochrobactrum sp. isolated from Industrial Wastewaters. Int. Biodeter. Biodegr. 2009, 63, 778–781. DOI: https://doi.org/10.1016/j.ibiod.2009.06.006.
  • Zhao, Q.; Liu, Y. State of the Art of Biological Processes for Coal Gasification Wastewater Treatment. Biotechnol. Adv. 2016, 34, 1064–1072. DOI: https://doi.org/10.1016/j.biotechadv.2016.06.005.
  • Zhang, W.; Feng, C.; Wei, C.; Yan, B.; Wu, C.; Li, N. Identification and Characterization of Polycyclic Aromatic Hydrocarbons in Coking Wastewater Sludge. J. Sep. Sci. 2012, 35, 3340–3346.
  • Nelkenbaum, E.; Dror, I.; Berkowitz, B. Reductive Hydrogenation of Polycyclic Aromatic Hydrocarbons Catalyzed by Metalloporphyrins. Chemosphere 2007, 68, 210–217.
  • Li, E.; Jin, X.; Lu, S. Microbial Communities in Biological Denitrification System Using Methanol as Carbon Source for Treatment of Reverse Osmosis Concentrate from Coking Wastewater. J. Water Reuse Desal. 2018, 8, 360–371. DOI: https://doi.org/10.2166/wrd.2017.024.
  • Ma, Q.; Qu, Y.; Shen, W.; Zhang, Z.; Wang, J.; Liu, Z.; Li, D.; Li, H.; Zhou, J. Bacterial Community Compositions of Coking Wastewater Treatment Plants in Steel Industry Revealed by Illumina High-Throughput Sequencing. Bioresour. Technol. 2015, 179, 436–443. DOI: https://doi.org/10.1016/j.biortech.2014.12.041.
  • McLellan, S. L.; Huse, S. M.; Mueller-Spitz, S. R.; Andreishcheva, E. N.; Sogin, M. L. Diversity and Population Structure of Sewage-Derived Microorganisms in Wastewater Treatment Plant Influent. Environ.. Microbiol. 2010, 12, 1376–1376. DOI: https://doi.org/10.1111/j.1462-2920.2010.02204.x.
  • Jetten, M. S. M.; Niftrik, L. V.; Strous, M.; Kartal, B.; Keltjens, J. T.; Op Den Camp, H. J. M. Biochemistry and Molecular Biology of Anammox Bacteria. Crit. Rev. Biochem. Mol. Biol. 2009, 44, 65–84. DOI: https://doi.org/10.1080/10409230902722783.
  • Costa, E.; Pérez, J.; Kreft, J. Why is Metabolic Labour Divided in Nitrification? Trends Microbiol. 2006, 14, 213–219.
  • Joshi, D. R.; Zhang, Y.; Tian, Z.; Gao, Y.; Yang, M. Performance and Microbial Community Composition in a Long-Term Sequential Anaerobic-Aerobic Bioreactor Operation Treating Coking Wastewater. Appl. Microbiol. Biotechnol. 2016, 100, 8191–8202. DOI: https://doi.org/10.1007/s00253-016-7591-8.
  • Ma, J.; Wu, H.; Wang, Y.; Qiu, G.; Fu, B.; Wu, C.; Wei, C. Material Inter-Recycling for Advanced Nitrogen and Residual COD Removal from Bio-Treated Coking Wastewater through Autotrophic Denitrification. Bioresour. Technol. 2019, 289, 121616. DOI: https://doi.org/10.1016/j.biortech.2019.121616.
  • Zhu, J.; Chen, L.; Zhang, Y.; Zhu, X. Revealing the Anaerobic Acclimation of Microbial Community in a Membrane Bioreactor for Coking Wastewater Treatment by Illumina Miseq Sequencing. J. Environ. Sci.-China 2018, 64, 139–148. DOI: https://doi.org/10.1016/j.jes.2017.06.003.
  • Zhang, X.; Zhang, L.; Wu, M.; Tang, Q.; Song, Z.; Zhou, H.; Bao, Y.; Liu, L.; Qu, Y. Comparative Characterization and Functional Genomic Analysis of Two Comamonas sp. strains for Biodegradation of Quinoline. J. Chem. Technol. Biotechnol. 2020, 95, 2017–2026. DOI: https://doi.org/10.1002/jctb.6390.
  • Liu, T.; Mao, Y.; Shi, Y.; Quan, X. Start-up and Bacterial Community Compositions of Partial Nitrification in Moving Bed Biofilm Reactor. Appl. Microbiol. Biotechnol. 2017, 101, 2563–2574. DOI: https://doi.org/10.1007/s00253-016-8003-9.
  • Zheng, M.; Xu, C.; Zhong, D.; Han, Y.; Zhang, Z.; Zhu, H.; Han, H. Synergistic Degradation on Aromatic Cyclic Organics of Coal Pyrolysis Wastewater by Lignite Activated Coke-Active Sludge Process. Chem. Eng. J. 2019, 364, 410–419. DOI: https://doi.org/10.1016/j.cej.2019.01.121.
  • Li, J.; Du, Q.; Peng, H.; Zhang, Y.; Bi, Y.; Shi, Y.; Xu, Y.; Liu, T. Optimization of Biochemical Oxygen Demand to Total Nitrogen Ratio for Treating Landfill Leachate in a Single-Stage Partial Nitrification-Denitrification System. J. Clean. Prod. 2020, 266, 121809. DOI: https://doi.org/10.1016/j.jclepro.2020.121809.
  • Zhou, J.; Li, H.; Chen, X.; Wan, D.; Mai, W.; Sun, C. Cometabolic Degradation of Low-Strength Coking Wastewater and the Bacterial Community Revealed by High-Throughput Sequencing. Bioresour. Technol. 2017, 245, 379–385. DOI: https://doi.org/10.1016/j.biortech.2017.08.119.
  • Jiang, J.; Liu, Y.; Liu, Y.; Hou, S. A Novel ZnONPs/PVA-Functionalized Biomaterials for Bacterial Cells Immobilization and Its Strengthening Effects on Quinoline Biodegradation. Curr. Microbiol. 2018, 75, 316–322.
  • Wu, Y.; He, T.; Zhong, M.; Zhang, Y.; Li, E.; Huang, T.; Hu, Z. Isolation of Marine Benzo[a]Pyrene-Degrading Ochrobactrum sp BAP5 and Proteins Characterization. J. Environ. Sci. 2009, 21, 1446–1451. DOI: https://doi.org/10.1016/S1001-0742(08)62438-9.
  • Wen, Q.; Wang, Q.; Li, X.; Chen, Z.; Tang, Y.; Zhang, C. Enhanced Organics and Cu2+ Removal in Electroplating Wastewater by Bioaugmentation. Chemosphere 2018, 212, 476–485.
  • Herrero, M.; Stuckey, D. C. Bioaugmentation and Its Application in Wastewater Treatment: A Review. Chemosphere 2015, 140, 119–128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.