Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 8
291
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ozonation and UV photolysis for removing anticancer drug residues from hospital wastewater

ORCID Icon, , &
Pages 635-644 | Received 24 Nov 2021, Accepted 22 Jun 2022, Published online: 18 Jul 2022

References

  • Botero-Coy, A. M.; Martínez-Pachón, D.; Boix, C.; Rincón, R. J.; Castillo, N.; Arias-Marín, L. P.; Manrique-Losada, L.; Torres-Palma, R.; Moncayo-Lasso, A.; Hernández, F. An Investigation into the Occurrence and Removal of Pharmaceuticals in Colombian Wastewater. Sci. Total Environ. 2018, 642, 842–853. DOI: 10.1016/j.scitotenv.2018.06.088.
  • Reichert, J. F.; Souza, D. M.; Martins, A. F. Antipsychotic Drugs in Hospital Wastewater and a Preliminary Risk Assessment. Ecotoxicol. Environ. Saf. 2019, 170, 559–567. DOI: 10.1016/j.ecoenv.2018.12.021.
  • Cristóvão, M. B.; Bento-Silva, A.; Bronze, M. R.; Crespo, J. G.; Pereira, V. J. Detection of Anticancer Drugs in Wastewater Effluents: Grab versus Passive Sampling. Sci. Total Environ. 2021, 786, 147477. DOI: 10.1016/j.scitotenv.2021.147477.
  • Seben, D.; Toebe, M.; Wastowski, A. D.; Hofstätter, K.; Volpatto, F.; Zanella, R.; Prestes, O. D.; Golombieski, J. I. Water Quality Variables and Emerging Environmental Contaminant in Water for Human Consumption in Rio Grande Do Sul, Brazil. Environ. Challenge. 2021, 5, 100266. DOI: 10.1016/j.envc.2021.100266.
  • Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C. U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem Rev. 2019, 119, 3510–3673.
  • Biswas, P.; Vellanki, B. P.; Kazmi, A. A. Investigating a Broad Range of Emerging Contaminants in a Set of Anthropogenically Impacted Environmental Compartments. Sci. Total Environ. 2022, 824, 153757. DOI: 10.1016/j.scitotenv.2022.153757.
  • Della-Flora, A.; Wilde, M. L.; Thue, P. S.; Lima, D.; Lima, E. C.; Sirtori, C. Combination of Solar photo-Fenton and Adsorption Process for Removal of the Anticancer Drug Flutamide and Its Transformation Products from Hospital Wastewater. J. Hazard. Mater. 2020, 396, 122699. DOI: 10.1016/j.jhazmat.2020.122699.
  • Rowney, N. C.; Johnson, A. C.; Williams, R. J. Cytotoxic Drugs in Drinking Water: A Prediction and Risk Assessment Exercise for the Thames Catchment in the United Kingdom. Environ. Toxicol. Chem. 2009, 28, 2733–2743. DOI: 10.1897/09-067.1.
  • Lutterbeck, C. A.; Wilde, M. L.; Baginska, E.; Leder, C.; Machado, Ê. L.; Kümmerer, K. Degradation of Cyclophosphamide and 5-Fluorouracil by UV and Simulated Sunlight Treatments: Assessment of the Enhancement of the Biodegradability and Toxicity. Environ. Pollut. 2016, 208, 467–476.
  • González-González, R. B.; Sharma, P.; Singh, S. P.; Américo-Pinheiro, J. H. P.; Parra-Saldívar, R.; Bilal, M.; Iqbal, H. M. N. Persistence, Environmental Hazards, and Mitigation of Pharmaceutically Active Residual Contaminants from Water Matrices. Sci. Total Environ. 2022, 821, 153329.
  • Yin, J.; Shao, B.; Zhang, J.; Li, K. A Preliminary Study on the Occurrence of Cytostatic Drugs in Hospital Effluents in Beijing, China. Bull. Environ. Contam. Toxicol. 2010, 84, 39–45. DOI: 10.1007/s00128-009-9884-4.
  • Novak, M.; Žegura, B.; Modic, B.; Heath, E.; Filipič, M. Cytotoxicity and Genotoxicity of Anticancer Drug Residues and Their Mixtures in Experimental Model with Zebrafish Liver Cells. Sci. Total. Environ. 2017, 601-602, 293–300. DOI: 10.1016/j.scitotenv.2017.05.115.
  • Cristóvão, M. B.; Torrejais, J.; Janssens, R.; Luis, P.; Bruggen, B.; Van der; Dubey, K. K.; Mandal, M. K.; Bronze, M. R.; Crespo, J. G.; Pereira, V. J. Treatment of Anticancer Drugs in Hospital and Wastewater Effluents Using Nanofiltration. Sep. Purif. Technol. 2019, 224, 273–280. DOI: 10.1016/j.seppur.2019.05.016.
  • Besse, J.; Latour, J.; Garric, J. Anticancer Drugs in Surface Waters. What Can we Say about the Occurrence and Environmental Significance of Cytotoxic, Cytostatic and Endocrine Therapy Drugs? Environ. Int. 2012, 39, 73–86.
  • Kümmerer, K.; Al-Ahmad, A. Estimation of the Cancer Risk to Humans Resulting from the Presence of Cyclophosphamide and Ifosfamide in Surface Water. Environ. Sci. Pollut. Res. Int. 2010, 17, 486–496.
  • Negreira, N.; Regueiro, J.; López de Alda, M.; Barceló, D. Degradation of the Anticancer Drug Erlotinib during Water Chlorination: Non-Targeted Approach for the Identification of Transformation Products. Water Res. 2015, 85, 103–113. DOI: 10.1016/j.watres.2015.08.005.
  • Mišík, M.; Filipic, M.; Nersesyan, A.; Kundi, M.; Isidori, M.; Knasmueller, S. Environmental Risk Assessment of Widely Used Anticancer Drugs (5-Fluorouracil, Cisplatin, Etoposide, Imatinib Mesylate). Water Res. 2019, 164, 114953. DOI: 10.1016/j.watres.2019.114953.
  • Jelić, A.; Gros, M.; Petrović, M.; Ginebreda, A.; Barceló, D. Occurrence and Elimination of Pharmaceuticals During Conventional Wastewater Treatment. In Emerging and Priority Pollutants in Rivers; Guasch, H., Ginebreda, A., Geiszinger, A., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; Vol. 19, 147–179
  • Ghafuri, Y.; Yunesian, M.; Nabizadeh, R.; Mesdaghinia, A.; Dehghani, M. H.; Alimohammadi, M. Platinum Cytotoxic Drugs in the Municipal Wastewater and Drinking Water, a Validation Method and Health Risk Assessment. Hum. Ecol. Risk Assess. An Int. J. 2018, 24, 784–796. DOI: 10.1080/10807039.2017.1400372.
  • Yin, J.; Yang, Y.; Li, K.; Zhang, J.; Shao, B. Analysis of Anticancer Drugs in Sewage Water By Selective SPE and UPLC-ESI-MS-MS. J. Chromatogr. Sci. 2010, 48, 781–789.
  • Ferrando-Climent, L.; Rodriguez-Mozaz, S.; Barceló, D. Incidence of Anticancer Drugs in an Aquatic Urban System: From Hospital Effluents through Urban Wastewater to Natural Environment. Environ. Pollut. 2014, 193, 216–223. DOI: 10.1016/j.envpol.2014.07.002.
  • Souza, D. M.; Reichert, J. F.; Martins, A. F. A Simultaneous Determination of anti-Cancer Drugs in Hospital Effluent by DLLME HPLC-FLD, Together with a Risk Assessment. Chemosphere. 2018, 201, 178–188. DOI: 10.1016/j.chemosphere.2018.02.164.
  • Gouveia, T. I. A.; Silva, A. M. T.; Ribeiro, A. R.; Alves, A.; Santos, M. S. F. Liquid-Liquid Extraction as a Simple Tool to Quickly Quantify Fourteen Cytostatics in Urban Wastewaters and Access Their Impact in Aquatic Biota. Sci. Total Environ. 2020, 740, 139995. DOI: 10.1016/j.scitotenv.2020.139995.
  • Olalla, A.; Negreira, N.; López de Alda, M.; Barceló, D.; Valcárcel, Y. A Case Study to Identify Priority Cytostatic Contaminants in Hospital Effluents. Chemosphere. 2018, 190, 417–430. DOI: 10.1016/j.chemosphere.2017.09.129.
  • Klein, MdO.; Serrano, S. V.; Santos-Neto, Á.; Cruz, C. d.; Brunetti, I. A.; Lebre, D.; Gimenez, M. P.; Reis, R. M.; Silveira, H. C. S. Detection of anti-Cancer Drugs and Metabolites in the Effluents from a Large Brazilian Cancer Hospital and an Evaluation of Ecotoxicology. Environ. Pollut. 2021, 268, 115857. DOI: 10.1016/j.envpol.2020.115857.
  • Verlicchi, P. Trends, New Insights and Perspectives in the Treatment of Hospital Effluents. Curr. Opin. Environ. Sci. Heal. 2021, 19, 100217. DOI: 10.1016/j.coesh.2020.10.005.
  • Ferrer-Polonio, E.; Fernández-Navarro, J.; Iborra-Clar, M.-I.; Alcaina-Miranda, M.-I.; Mendoza-Roca, J. A. Removal of Pharmaceutical Compounds Commonly-Found in Wastewater through a Hybrid Biological and Adsorption Process. J. Environ. Manage. 2020, 263, 110368.
  • Nielsen, U.; Hastrup, C.; Klausen, M. M.; Pedersen, B. M.; Kristensen, G. H.; Jansen, J. L. C.; Bak, S. N.; Tuerk, J. Removal of APIs and Bacteria from Hospital Wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2. Water Sci. Technol. 2013, 67, 854–862. DOI: 10.2166/wst.2012.645.
  • Cristóvão, M. B.; Bernardo, J.; Bento-Silva, A.; Ressureição, M.; Bronze, M. R.; Crespo, J. G.; Pereira, V. J. Treatment of Anticancer Drugs in a Real Wastewater Effluent Using Nanofiltration: A Pilot Scale Study. Sep. Purif. Technol. 2022, 288, 120565. DOI: 10.1016/j.seppur.2022.120565.
  • Leyva-Díaz, J. C.; Batlles-delaFuente, A.; Molina-Moreno, V.; Sánchez Molina, J.; Belmonte-Ureña, L. J. Removal of Pharmaceuticals from Wastewater: Analysis of the Past and Present Global Research Activities. Water. 2021, 13, 2353. DOI: 10.3390/w13172353.
  • Della-Flora, A.; Wilde, M. L.; Thue, P. S.; Lima, D.; Lima, E. C.; Sirtori, C. Combination of Solar photo-Fenton and Adsorption Process for Removal of the Anticancer Drug Flutamide and Its Transformation Products from Hospital Wastewater. J. Hazard Mater. 2020, 396, 122699.
  • Ferre-Aracil, J.; Valcárcel, Y.; Negreira, N.; Alda, M. d.; Barceló, D.; Cardona, S. C.; Navarro-Laboulais, J. Ozonation of Hospital Raw Wastewaters for Cytostatic Compounds Removal. Kinetic Modelling and Economic Assessment of the Process. Sci. Total Environ. 2016, 556, 70–79.
  • Garcia-Ac, A.; Broséus, R.; Vincent, S.; Barbeau, B.; Prévost, M.; Sauvé, S. Oxidation Kinetics of Cyclophosphamide and Methotrexate by Ozone in Drinking Water. Chemosphere. 2010, 79, 1056–1063. DOI: 10.1016/j.chemosphere.2010.03.032.
  • Kovalova, L.; Siegrist, H.; Gunten, U. v.; Eugster, J.; Hagenbuch, M.; Wittmer, A.; Moser, R.; McArdell, C. S. Elimination of Micropollutants during Post-Treatment of Hospital Wastewater with Powdered Activated Carbon, Ozone, and UV. Environ. Sci. Technol. 2013, 47, 7899–7908.
  • Wols, B. A.; Hofman-Caris, C. H. M.; Harmsen, D. J. H.; Beerendonk, E. F. Degradation of 40 Selected Pharmaceuticals by UV/H2O2. Water Res. 2013, 47, 5876–5888.
  • Bahrpeyma, S.; Hemmateenejad, B.; Javidnia, K. Photo-Degradation Study of Dacarbazine by Spectrophotometric–Chemometrics and HPLC Methods. J. Iran Chem. SOC. 2016, 13, 221–229. DOI: 10.1007/s13738-015-0729-2.
  • Gosetti, F.; Belay, M. H.; Marengo, E.; Robotti, E. Development and Validation of a UHPLC-MS/MS Method for the Identification of Irinotecan Photodegradation Products in Water Samples. Environ. Pollut. 2020, 256, 113370.
  • Somensi, C. A.; Simionatto, E. L.; Dalmarco, J. B.; Gaspareto, P.; Radetski, C. M. A Comparison between Ozonolysis and Sonolysis/Ozonolysis Treatments for the Degradation of the Cytostatic Drugs Methotrexate and Doxorubicin: Kinetic and Efficiency Approaches. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2012, 47, 1543–1550. DOI: 10.1080/10934529.2012.680414.
  • Česen, M.; Kosjek, T.; Laimou-Geraniou, M.; Kompare, B.; Širok, B.; Lambropolou, D.; Heath, E. Occurrence of Cyclophosphamide and Ifosfamide in Aqueous Environment and Their Removal by Biological and Abiotic Wastewater Treatment Processes. Sci. Total Environ. 2015, 527–528, 465–473. DOI: 10.1016/j.scitotenv.2015.04.109.
  • Dodd, M. C.; Zuleeg, S.; Gunten, U. v.; Pronk, W. Ozonation of Source-Separated Urine for Resource Recovery and Waste Minimization: Process Modeling, Reaction Chemistry, and Operational Considerations. Environ. Sci. Technol. 2008, 42, 9329–9337. DOI: 10.1021/es800560r.
  • Escher, B. I.; Pronk, W.; Suter, M. J.-F.; Maurer, M. Monitoring the Removal Efficiency of Pharmaceuticals and Hormones in Different Treatment Processes of Source-Separated Urine with Bioassays. Environ. Sci. Technol. 2006, 40, 5095–5101. DOI: 10.1021/es060598w.
  • Hernández, C.; Ramos, Y.; Fernández, L. A.; Ledea, O.; Bataller, M.; Véliz, E.; Besada, V.; Rosado, A. Ozonation of Cisplatin in Aqueous Solution at pH 9. Ozone Sci. Eng. 2008, 30, 189–196. DOI: 10.1080/01919510801907722.
  • Bolton, J. R.; Stefan, M. I. Fundamental Photochemical Approach to the Concepts of Fluence (UV Dose) and Electrical Energy Efficiency in Photochemical Degradation Reactions. Res. Chem. Intermed. 2002, 28, 857–870. DOI: 10.1163/15685670260469474.
  • Buerge, I. J.; Buser, H.-R.; Poiger, T.; Müller, M. D. Occurrence and Fate of the Cytostatic Drugs Cyclophosphamide and Ifosfamide in Wastewater and Surface Waters †. Environ. Sci. Technol. 2006, 40, 7242–7250. DOI: 10.1021/es0609405.
  • Lai, W. W.-P.; Lin, H. H.-H.; Lin, A. Y.-C. TiO2 Photocatalytic Degradation and Transformation of Oxazaphosphorine Drugs in an Aqueous Environment. J. Hazard. Mater. 2015, 287, 133–141. DOI: 10.1016/j.jhazmat.2015.01.045.
  • Ocampo-Pérez, R.; Sánchez-Polo, M.; Rivera-Utrilla, J.; Leyva-Ramos, R. Degradation of Antineoplastic Cytarabine in Aqueous Phase by Advanced Oxidation Processes Based on Ultraviolet Radiation. Chem. Eng. J. 2010, 165, 581–588. DOI: 10.1016/j.cej.2010.09.076.
  • Nawara, K.; Krysinski, P.; Blanchard, G. J. Photoinduced Reactivity of Doxorubicin: Catalysis and Degradation. J. Phys. Chem. A. 2012, 116, 4330–4337. DOI: 10.1021/jp303218r.
  • Guo, R.; Zheng, F.; Chen, J. Evaluation of the Aquatic Toxic Effect Varied during the Degradation of Capecitabine under the Environmental Abiotic and Biotic Processes. RSC Adv. 2015, 5, 76772–76778. DOI: 10.1039/C5RA17315A.
  • Negreira, N.; Alda, M. d.; Barceló, D. Cytostatic Drugs and Metabolites in Municipal and Hospital Wastewaters in Spain: Filtration, Occurrence, and Environmental Risk. Sci. Total Environ. 2014, 497–498, 68–77. DOI: 10.1016/j.scitotenv.2014.07.101.
  • Carlson, J. C.; Stefan, M. I.; Parnis, J. M.; Metcalfe, C. D. Direct UV Photolysis of Selected Pharmaceuticals, Personal Care Products and Endocrine Disruptors in Aqueous Solution. Water Res. 2015, 84, 350–361.
  • Tripathi, A. K.; David, A.; Govil, T.; Rauniyar, S.; Rathinam, N. K.; Goh, K. M.; Sani, R. K. Environmental Remediation of Antineoplastic Drugs: Present Status, Challenges, and Future Directions. Processes. 2020, 8, 747. DOI: 10.3390/pr8070747.
  • Franquet-Griell, H.; Medina, A.; Sans, C.; Lacorte, S. Biological and Photochemical Degradation of Cytostatic Drugs under Laboratory Conditions. J. Hazard Mater. 2017, 323, 319–328.
  • Calza, P.; Medana, C.; Sarro, M.; Rosato, V.; Aigotti, R.; Baiocchi, C.; Minero, C. Photocatalytic Degradation of Selected Anticancer Drugs and Identification of Their Transformation Products in Water by Liquid Chromatography–High Resolution Mass Spectrometry. J. Chromatogr A. 2014, 1362, 135–144. DOI: 10.1016/j.chroma.2014.08.035.
  • Gunten, U. v Ozonation of Drinking Water: Part I. Oxidation Kinetics and Product Formation. Water Res. 2003, 37, 1443–1467.
  • Garcia-Costa, A. L.; Gouveia, T. I. A.; Pereira, M. F. R.; Silva, A. M. T.; Alves, A.; Madeira, L. M.; Santos, M. S. F. Ozonation of Cytostatic Drugs in Aqueous Phase. Sci. Total Environ. 2021, 795, 148855.

References

  • FRÉDÉRIC, O.; YVES, P. Pharmaceuticals in hospital wastewater: Their ecotoxicity and contribution to the environmental hazard of the effluent. Chemosphere, v. 115, p. 31–39, 2014.
  • GÓMEZ-CANELA, C. et al. Occurrence of cytostatic compounds in hospital effluents and wastewaters, determined by liquid chromatography coupled to high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, v. 406, n. 16, p. 3801–3814, 14 jun. 2014.
  • RABII, F. W. et al. Determination of six chemotherapeutic agents in municipal wastewater using online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. Science of The Total Environment, v. 487, n. 1, p. 792–800, jul. 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.