Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 8
116
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Self-synthesized TiO2 nanoparticles-pH-mediated dispersive solid phase extraction coupled with high performance liquid chromatography for the determination of quinolones in biological matrices

, , , &
Pages 656-666 | Received 21 Apr 2022, Accepted 07 Jul 2022, Published online: 26 Jul 2022

References

  • Chee-Sanford, J. C.; Mackie, R. I.; Koike, S.; Krapac, I. G.; Lin, Y. F.; Yannarell, A. C.; Maxwell, S.; Aminov, R. I. Fate and Transport of Antibiotic Residues and Antibiotic Resistance Genes following Land Application of Manure Waste. J. Environ. Qual. 2009, 38, 1086–1108. DOI: 10.2134/jeq2008.0128.
  • Alvarez-Munoz, D.; Huerta, B.; Fernandez-Tejedor, M.; Rodriguez-Mozaz, S.; Barcelo, D. Multi-Residue Method for the Analysis of Pharmaceuticals and Some of Their Metabolites in Bivalves. Talanta 2015, 136, 174–182. DOI: 10.1016/j.talanta.2014.12.035.
  • Guan, J.; Zhang, C.; Wang, Y.; Guo, Y.; Huang, P.; Zhao, L. Simultaneous Determination of 12 Pharmaceuticals in Water Samples by Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Coupled with ultra-High Performance Liquid Chromatography with Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2016, 408, 8099–8109. DOI: 10.1007/s00216-016-9913-1.
  • Zhu, M.; Zhao, H.; Xia, D.; Du, J.; Xie, H.; Chen, J. Determination of 21 Antibiotics in Sea Cucumber Using Accelerated Solvent Extraction with in-Cell Clean-up Coupled to Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Chem. 2018, 258, 87–94. DOI: 10.1016/j.foodchem.2018.03.051.
  • Rani, S.; Malik, A. K.; Kaur, R.; Kaur, R, Heena A Review for the Analysis of Antidepressant, Antiepileptic and Quinolone Type Drugs in Pharmaceuticals and Environmental Samples. Crit. Rev. Anal. Chem. 2016, 46, 424–442. DOI: 10.1080/10408347.2016.1141670.
  • Guidi, L. R.; Santos, F. A.; Ribeiro, A. C.; Fernandes, C.; Silva, L. H.; Gloria, M. B. A Simple, Fast and Sensitive Screening LC-ESI-MS/MS Method for Antibiotics in Fish. Talanta 2017, 163, 85–93. DOI: 10.1016/j.talanta.2016.10.089.
  • Wang, G. N.; Yang, K.; Liu, H. Z.; Feng, M. X.; Wang, J. P. Molecularly Imprinted Polymer-Based Solid Phase Extraction Combined High Performance Liquid Chromatography for Determination of Fluoroquinolones in Milk. Anal. Methods 2016, 8, 5511–5518. DOI: 10.1039/C6AY00810K.
  • Amoli-Diva, M.; Pourghazi, K.; Hajjaran, S. Dispersive micro-Solid Phase Extraction Using Magnetic Nanoparticle Modified Multi-Walled Carbon Nanotubes Coupled with Surfactant-Enhanced Spectrofluorimetry for Sensitive Determination of Lomefloxacin and Ofloxacin from Biological Samples. Mater. Sci. Eng. C. Mater Biol. Appl. 2016, 60, 30–36. DOI: 10.1016/j.msec.2015.11.013.
  • Xu, F.; Liu, F.; Wang, C.; Wei, Y. Use of Phenyl/Tetrazolyl-Functionalized Magnetic Microspheres and Stable Isotope Labeled Internal Standards for Significant Reduction of Matrix Effect in Determination of Nine Fluoroquinolones by Liquid Chromatography-Quadrupole Linear Ion Trap Mass Spectrometry. Anal. Bioanal. Chem. 2018, 410, 1709–1724. DOI: 10.1007/s00216-017-0821-9.
  • Niu, Z.; Zhang, W.; Yu, C.; Zhang, J.; Wen, Y. Recent Advances in Biological Sample Preparation Methods Coupled with Chromatography, Spectrometry and Electrochemistry Analysis Techniques. TrAC Trends Anal. Chem. 2018, 102, 123–146. DOI: 10.1016/j.trac.2018.02.005.
  • Zhang, X.; Wang, C.; Yang, L.; Zhang, W.; Lin, J.; Li, C. Determination of Eight Quinolones in Milk Using Immunoaffinity Microextraction in a Packed Syringe and Liquid Chromatography with Fluorescence Detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1064, 68–74. DOI: 10.1016/j.jchromb.2017.09.004.
  • Rodriguez-Gomez, R.; Garcia-Corcoles, M. T.; Cipa, M.; Barron, D.; Navalon, A.; Zafra-Gomez, A. Determination of Quinolone Residues in Raw Cow Milk. Application of Polar Stir-Bars and Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2018, 35, 1127–1138. DOI: 10.1080/19440049.2018.1430382.
  • He, G.; Guo, B.; Yu, J.; Zhang, J.; Wu, X.; Cao, G.; Shi, Y.; Tsai, C. Determination of a Novel Nonfluorinated Quinolone, Nemonoxacin, in Human Feces and Its Glucuronide Conjugate in Human Urine and Feces by High-Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry. Biomed. Chromatogr. 2015, 29, 739–748. DOI: 10.1002/bmc.3350.
  • Timofeeva, I.; Timofeev, S.; Moskvin, L.; Bulatov, A. A Dispersive Liquid-Liquid Microextraction Using a Switchable Polarity Dispersive Solvent. Automated HPLC-FLD Determination of Ofloxacin in Chicken Meat. Anal. Chim. Acta 2017, 949, 35–42. DOI: 10.1016/j.aca.2016.11.018.
  • Leipert, J.; Bobis, I.; Schubert, S.; Fickenscher, H.; Leippe, M.; Tholey, A. Miniaturized Dispersive Liquid-Liquid Microextraction and MALDI MS Using Ionic Liquid Matrices for the Detection of Bacterial Communication Molecules and Virulence Factors. Anal. Bioanal. Chem. 2018, 410, 4737–4748. DOI: 10.1007/s00216-018-0937-6.
  • Yu, X.; Liu, H.; Pu, C.; Chen, J.; Sun, Y.; Hu, L. Determination of Multiple Antibiotics in Leafy Vegetables Using QuEChERS-UHPLC-MS/MS. J. Sep. Sci. 2018, 41, 713–722. DOI: 10.1002/jssc.201700798.
  • Wei, L.; Chen, Y.; Shao, D.; Li, J. Simultaneous Determination of Nine Quinolones in Pure Milk Using PFSPE-HPLC-MS/MS with PS-PAN Nanofibers as a Sorbent. Foods 2022, 11, 202–209. DOI: 10.1016/jchromb.20005.05.007.
  • Capsoni, D.; Guerra, G.; Puscalau, C.; Maraschi, F.; Bruni, G.; Monteforte, F.; Profumo, A.; Sturini, M. Zinc Based Metal-Organic Frameworks as Ofloxacin Adsorbents in Polluted Waters: ZIF-8 vs. Zn3(BTC)2. Int. J. Environ. Res. Public Health 2021, 18, 1433–1449. DOI: 10.3390/ijerph18041433.
  • Lu, W.; Liu, J.; Li, J.; Wang, X.; Lv, M.; Cui, R.; Chen, L. Dual-Template Molecularly Imprinted Polymers for Dispersive Solid-Phase Extraction of Fluoroquinolones in Water Samples Coupled with High Performance Liquid Chromatography. Analyst 2019, 144, 1292–1302. DOI: 10.1039/c8an02133c.
  • Ghiasi, A.; Malekpour, A.; Mahpishanian, S. Metal-Organic Framework MIL101 (Cr)-NH2 Functionalized Magnetic Graphene Oxide for Ultrasonic-Assisted Magnetic Solid Phase Extraction of Neonicotinoid Insecticides from Fruit and Water Samples. Talanta 2020, 217, 121120–121127. DOI: 10.1016/j.talanta.2020.121120.
  • Feng, Z.; Huang, C.; Guo, Y.; Tong, P.; Zhang, L. Chemical Bonding of Oxygenated Carbon Nitride Nanosheets onto Stainless Steel Fiber for Solid-Phase Microextraction of Phthalic Acid Esters. Anal. Chim. Acta. 2019, 1084, 43–52. DOI: 10.1016/j.aca.2019.08.015.
  • Li, B.; Anwer, S.; Huang, X.; Luo, S.; Fu, J.; Liao, K. Nitrogen-Doped Carbon Encapsulated in Mesoporous TiO2 Nanotubes for Fast Capacitive Sodium Storage. J. Energy Chem. 2021, 55, 202–210. DOI: 10.1016/j.jechem.2020.06.074.
  • Du, J.; Wang, F.; Wang, Z.; Wang, X.; Du, X. Morphology, Composition and Selectivity of Nickel/Titanium Oxide Nanoflakes Grown on a Superelastic Nickel/Titanium Alloy Fiber Substrate for Highly Efficient Solid-Phase Microextraction of Aromatic Compounds. Anal. Methods 2019, 11, 1237–1247. DOI: 10.1039/C9AY00071B.
  • Zhang, R.; Wang, Z.; Wang, Z.; Wang, X.; Du, X. Tailoring the Selectivity of Titania Nanowire Arrays Grown on Titanium Fibers by Self-Assembled Modification of Trichlorophenylsilane for Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons. Mikrochim. Acta 2019, 186, 536–544. DOI: 10.1007/s00604-019-3553-z.
  • Wang, Y.; Guan, Y.; Li, Y.; Li, Z.; Wan, J.; Zhang, Y.; Fu, J. Evaluating the Bi-Functional Capacity for Arsenic Photo-Oxidation and Adsorption on Anatase TiO2 Nanostructures with Tunable Morphology. Process. Saf. Environ. 2021, 149, 123–134. DOI: 10.1016/j.psep.2020.10.036.
  • Rosales, M.; Orive, J.; Espinoza-González, R.; Fernández de Luis, R.; Gauvin, R.; Brodusch, N.; Rodríguez, B.; Gracia, F.; García, A. Adsorption of Phosphate Ions on Novel Inorganic Ion Exchangers. Chem. Eng. J. 2021, 415, 128906–128919. DOI: 10.1016/j.cej.2021.128906.
  • Chubar, N. I.; Kanibolotsky, V. A.; Strelko, V. V.; Gallios, G. G.; Samanidou, V. F.; Shaposhnikova, T. O.; Milgrandt, V. G.; Zhuravlev, I. Z. Molecular Mechanism of Surface Recognition. Azo Dyes Degradation on Fe, Ti, and Al Oxides through Metal Sulfonate Complexes. Colloid. Surface. A 2005, 255, 55–63. DOI: 10.1016/j.colsurfa.2004.12.015.
  • Bandara, J.; Mielczarski, J. A.; Kiwi, J. Low-Cost and Green Dispersive Solid Phase Extraction of Hydrophilic Compounds Using Titanium Dioxide Nanoparticles. Langmuir 1999, 15, 7670–7679. DOI: 10.1021/la9900270.
  • Dziomba, S.; Pawelec, A.; Ciura, K.; Dolegowska, M.; Klimowska, A.; Rodzaj, W.; Guerrouache, M.; Carbonnier, B.; Wielgomas, B. Determination of Phenolic Compounds in Residual Brewing Yeast Using Matrix Solid-Phase Dispersion Extraction Assisted by Titanium Dioxide Nanoparticles. Microchem. J. 2019, 145, 784–790. DOI: 10.1016/j.microc.2018.11.051.
  • Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M. E.; Madrid, Y. Development of a Titanium Dioxide-Assisted Preconcentration/on-Site Vapor-Generation Chip Hyphenated with Inductively Coupled Plasma-Mass Spectrometry for Online Determination of Mercuric Ions in Urine Samples. J. Chromatogr. A 2019, 1601, 255–265. DOI: 10.1016/j.chroma.2019.05.009.
  • Shih, T. T.; Chen, J. Y.; Luo, Y. T.; Lin, C. H.; Liu, Y. H.; Su, Y. A.; Chao, P. C.; Sun, Y. C. Rapid Preparation of Terbium-Doped Titanium Dioxide Nanoparticles and Their Enhanced Photocatalytic Performance. Anal. Chim. Acta 2019, 1063, 82–90. DOI: 10.1016/j.aca.2019.02.035.
  • Bejaoui Kefi, B.; Bouchmila, I.; Martin, P.; M’Hamdi, N. Adsorption Removal of 17β-Estradiol from Water by Rice Straw-Derived Biochar with Special Attention to Pyrolysis Temperature and Background Chemistry. Materials (Basel) 2022, 15, 822–835. DOI: 10.3390/ma15030822..
  • Ma, M.; Wei, Y.; Chen, J.; Shang, Q. Adsorption of Selected Endocrine Disrupting Compounds and Pharmaceuticals on Activated Biochars. Crystals 2021, 11, 28632–28642. DOI: 10.3390/cryst11111384..
  • Yu, J.; Yu, C.; Zhu, W.; He, G.; Wei, Y.; Zhou, J. Molecular Markers of Benzene Polycarboxylic Acids in Describing Biochar Physiochemical Properties and Sorption Characteristics. Chemosphere 2022, 286, 131626–131635. DOI: 10.1016/j.chemosphere.2021.131626..
  • Ma, M.; Wei, Y.; Wei, H.; Liu, X.; Liu, H.; Electrophoretic, B. pKa Determination of Quinolones with. RSC Adv. 2021, 11, 28632–28642. DOI: 10.1039/d1ra04405b.
  • Wang, Z.; Song, Y.; Cai, X.; Zhang, J.; Tang, T.; Wen, S. Rapid Preparation of Terbium-Doped Titanium Dioxide Nanoparticles and Their Enhanced Photocatalytic Performance. R. Soc. Open Sci. 2019, 6, 191077–191090. DOI: 10.1098/rsos.191077.
  • Wang, X.; Liu, N.; Liu, Y.; Jiang, L.; Zeng, G.; Tan, X.; Liu, S.; Yin, Z.; Tian, S.; Li, J. Adsorption Removal of 17β-Estradiol from Water by Rice Straw-Derived Biochar with Special Attention to Pyrolysis Temperature and Background Chemistry. IJERPH 2017, 14, 1213–1229. DOI: 10.3390/ijerph14101213.
  • Jung, C.; Park, J.; Lim, K. H.; Park, S.; Heo, J.; Her, N.; Oh, J.; Yun, S.; Yoon, Y. Adsorption of Selected Endocrine Disrupting Compounds and Pharmaceuticals on Activated Biochars. J. Hazard. Mater. 2013, 263, 702–710. DOI: 10.1016/j.jhazmat.2013.10.033.
  • Chang, Z.; Tian, L.; Wu, M.; Dong, X.; Peng, J.; Pan, B. Molecular Markers of Benzene Polycarboxylic Acids in Describing Biochar Physiochemical Properties and Sorption Characteristics. Environ. Pollut. 2018, 237, 541–548. DOI: 10.1016/j.envpol.2018.02.071.
  • Anbia, M.; Ahmadian, F.; Rezaie, M. Preparation of Titanium Dioxide Nanostructure from Ilmenite through Sulfate-Leaching Process and Solvent Extraction by D2EHPA. J Iran Chem. Soc. 2018, 15, 2533–2540. DOI: 10.1007/s13738-018-1441-9.
  • Lin, C. E.; Deng, Y.; Liao, W. S.; Sun, S. W.; Lin, W. Y.; Chen, C. C. Electrophoretic Behavior and pKa Determination of Quinolones with a Piperazinyl Substituent by Capillary Zone Electrophoresis. J. Chromatogr. A 2004, 1051, 283–290. DOI: 10.1016/S0021-9673(04)01422-0.
  • Langlois, M. H.; Montagut, M.; Dubost, J. P.; Grellet, J.; Saux, M. C. Protonation Equilibrium and Lipophilicity of Moxifloxacin. J. Pharm. Biomed. Anal. 2005, 37, 389–393. DOI: 10.1016/j.jpba.2004.10.022.
  • Rusu, A.; Tóth, G.; Szőcs, L.; Kökösi, J.; Kraszni, M.; Gyéresi, Á.; Noszál, B. Triprotic Site-Specific Acid-Base Equilibria and Related Properties of Fluoroquinolone Antibacterials. J. Pharm. Biomed. Anal. 2012, 66, 50–57. DOI: 10.1016/j.jpba.2012.02.024.
  • Ho, Y. S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process. Biochem. 1999, 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Jiang, L-h.; Liu, Y-g.; Zeng, G-m.; Xiao, F-y.; Hu, X-j.; Hu, X.; Wang, H.; Li, T-t.; Zhou, L.; Tan, X-f Removal of 17β-Estradiol by Few-Layered Graphene Oxide Nanosheets from Aqueous Solutions: External Influence and Adsorption Mechanism. Chem. Eng. J. 2016, 284, 93–102. DOI: 10.1016/j.cej.2015.08.139.
  • Loffredo, E.; Taskin, E. Adsorptive Removal of Ascertained and Suspected Endocrine Disruptors from Aqueous Solution Using Plant-Derived Materials. Environ. Sci. Pollut. Res. Int. 2017, 24, 19159–19166. DOI: 10.1007/s11356-017-9595-z.
  • Sun, W.; Zhou, K. Adsorption of 17β-Estradiol by Multi-Walled Carbon Nanotubes in Natural Waters with or without Aquatic Colloids. Chem. Eng. J. 2014, 258, 185–193. DOI: 10.1016/j.cej.2014.07.087.
  • Wang, F.; Sun, W.; Pan, W.; Xu, N. Adsorption of Sulfamethoxazole and 17β-Estradiol by Carbon Nanotubes/CoFe2O4 Composites. Chem. Eng. J. 2015, 274, 17–29. DOI: 10.1016/j.cej.2015.03.113.
  • Sheshmani, S.; Ashori, A.; Hasanzadeh, S. Removal of Acid Orange 7 from Aqueous Solution Using Magnetic Graphene/Chitosan: A Promising Nano-Adsorbent. Int. J. Biol. Macromol. 2014, 68, 218–224. DOI: 10.1016/j.ijbiomac.2014.04.057.
  • Barbour, M. E.; O’Sullivan, D. J.; Jagger, D. C. Chlorhexidine Adsorption to Anatase and Rutile Titanium Dioxide. Colloid. Surface. A 2007, 307, 116–120. DOI: 10.1016/j.colsurfa.2007.05.010.
  • Li, C.; Chen, L. Determination of Pyrethroid Pesticides in Environmental Waters Based on Magnetic Titanium Dioxide Nanoparticles Extraction Followed by HPLC Analysis. Chromatographia 2013, 76, 409–417. DOI: 10.1007/s10337-013-2393-y.
  • Liang, Y.; Li, Z.; Shi, P.; Ling, C.; Chen, X.; Zhou, Q.; Li, A. Performance of a Novel Magnetic Solid-Phase-Extraction Microsphere and Its Application in the Detection of Organic Micropollutants in the Huai River, China. Environ. Pollut. 2019, 252, 196–204. DOI: 10.1016/j.envpol.2019.05.115.
  • Bitas, D.; Samanidou, V. F. Effective Cleanup for the Determination of Six Quinolone Residues in Shrimp before HPLC with Diode Array Detection in Compliance with the European Union Decision 2002/657/EC. J. Sep. Sci. 2016, 39, 4805–4811. DOI: 10.1002/jssc.201600945.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.