Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 8
128
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fixed-bed reactor packed with pumice-supported TiO2 for the treatment of polluted water by solar-driven photocatalytic oxidation

, &
Pages 667-674 | Received 09 Apr 2021, Accepted 07 Jul 2022, Published online: 20 Jul 2022

References

  • Garrido-Cárdenas, J. A.; Esteban-García, B.; Agüera, A.; Sánchez-Pérez, J. A.; Manzano-Agugliaro, F. Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends. IJERPH 2019, 17, 170. DOI: 10.3390/ijerph17010170.
  • Quiñones-Murillo, D. H.; Ariza-Reyes, A. A.; Ardila-Vélez, L. J. Some Kinetic and Synergistic Considerations on the Oxidation of the Azo Compound Ponceau 4R by Solar–Mediated Heterogeneous Photocatalytic Ozonation. DWT 2019, 170, 61–74. DOI: 10.5004/dwt.2019.24711.
  • Zhu, D.; Zhou, Q. Action and Mechanism of Semiconductor Photocatalysis on Degradation of Organic Pollutants in Water Treatment: A Review. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100255.
  • Ahmad, K.; Ghatak, H. R.; Ahuja, S. M. A Review on Photocatalytic Remediation of Environmental Pollutants and H2 Production through Water Splitting: A Sustainable Approach. Environ. Nanotechnol. Monit. Manag. 2020, 19, 100893. DOI: 10.1016/j.eti.2020.100893.
  • Coronado, J. M.; Hernández-Alonso, M. D. The Keys of Success: TiO2 as a Benchmark Photocatalyst. In: Design of Advanced Photocatalytic Materials for Energy and Environmental Applications, Green Energy and Technology; Coronado, J.M.; Fresno, F.; Hernández-Alonso, M.D.; Portela, R., Eds.; Springer-Verlag: London, 2013; pp. 85–101.
  • Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; et al. Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts: A Review. J. Clean. Prod. 2020, 268, 121725. DOI: 10.1016/j.jclepro.2020.121725.
  • Kanan, S.; Moyet, M. A.; Arthur, R. B.; Patterson, H. H. Recent Advances on TiO2-Based Photocatalysts toward the Degradation of Pesticides and Major Organic Pollutants from Water Bodies. Catal. Rev. Sci. Eng. 2020, 62, 1–65. DOI: 10.1080/01614940.2019.1613323.
  • Bagheri, S.; Julkapli, N. M.; Hamid, S. B. A. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis. Sci. World J. 2014, 727496, 1–21.
  • Shan, A. Y.; Ghazi, T. I. M.; Rashid, S. A. Immobilisation of Titanium Dioxide onto Supporting Materials in Heterogeneous Photocatalysis: A Review. Appl. Catal., A 2010, 389, 1–8. DOI: 10.1016/j.apcata.2010.08.053.
  • Pronina, N.; Klauson, D.; Moiseev, A.; Deubener, J.; Krichevskaya, M. Titanium Dioxide Sol–Gel-Coated Expanded Clay Granules for Use in Photocatalytic Fluidized-Bed Reactor. Appl. Catal, B 2015, 178, 117–123. DOI: 10.1016/j.apcatb.2014.10.006.
  • Slamet, S.; Tristantini, D.; Kusrini, E.; Philo, D. Simple Methods for Immobilizing Titania into Pumice for Photodegradation of Phenol Waste. Int. J. Ind. Chem. 2018, 9, 127–139. DOI: 10.1007/s40090-018-0144-5.
  • Bockenstedt, J.; Vidwans, N. A.; Gentry, T.; Vaddiraju, S. Catalyst Recovery, Regeneration and Reuse during Large-Scale Disinfection of Water Using Photocatalysis. Water 2021, 13, 2623. DOI: 10.3390/w13192623.
  • Goutham, R.; Badri Narayan, R.; Srikanth, B.; Gopinath, K. P. Chapter 2: Supporting Materials for Immobilization of Nano-Photocatalysts. In: Nanophotocatalysis and Environmental Applications; Inamuddin; Sharma, G.; Kumar, A.; Lichtfouse, E.; Asiri, A.M., Eds.; Springer International Publishing: Switzerland, 2019; pp. 49–81.
  • Shao, L.; Liu, H.; Zeng, W.; Zhou, C.; Li, D.; Wang, L.; Lan, Y.; Xu, F.; Liu, G. Immobilized and Photocatalytic Performances of PDMS-SiO2-Chitosan@TiO2 Composites on Pumice under Simulated Sunlight Irradiation. Appl. Surf. Sci. 2019, 478, 1017–1026. DOI: 10.1016/j.apsusc.2019.02.060.
  • Rad, T. S.; Khataee, A.; Kayan, B.; Kalderis, D.; Akay, S. Synthesis of pumice-TiO2 Nanoflakes for Sonocatalytic Degradation of Famotidine. J. Clean. Prod. 2018, 202, 853–862. DOI: 10.1016/j.jclepro.2018.08.165.
  • Acevedo, J. D. Proceso Fotocatalítico Como Alternativa Para la Potabilización de Agua. Master’s Thesis, Medellín, Universidad EAFIT, 2012.
  • Meriño-Mantilla, M. J.; Salinas-Brigante, C. A.; Quiñones-Murillo, D. H. 2019 Design and Evaluation of a Reactor Prototype for the Removal of Emerging Contaminants from Industrial Sewage through Solar-Driven Photocatalysis and Ozonation. 2019 7th International Engineering, Sciences and Technology Conference (IESTEC), 237–242.
  • Khonkar, H. E. I.; Sayigh, A. A. M. Optimization of the Tubular Absorber Using a Compound Parabolic Concentrator. Renew. Energy 1995, 6, 17–21. DOI: 10.1016/0960-1481(94)00061-A.
  • Singleton, V. L.; Orthofer, R.; Lamuela-Raventós, R. M. Analysis of Total Phenols and other oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178.
  • Alraddadi, S.; Assaedi, H. Physical Properties of Mesoporous Scoria and Pumice Volcanic Rocks. J. Phys. Commun. 2021, 5, 115018. DOI: 10.1088/2399-6528/ac3a95.
  • Lu, P.; Hsieh, Y. L. Highly Pure Amorphous Silica Nano-Disks from Rice Straw. Powder Technol. 2012, 225, 149–155. DOI: 10.1016/j.powtec.2012.04.002.
  • Alver, A.; Kılıç, A. Catalytic Ozonation by Iron Coated Pumice for the Degradation of Natural Organic Matters. Catalysts 2018, 8, 219. DOI: 10.3390/catal8050219.
  • Grillo, J.; Montaño, A. M.; González, C. P.; Barón, G. C. Removal of Cadmium in Wastewater through Geopolymeric Materials Based on Pumice. J. Phys.: Conf. Ser. 2019, 1386, 012039. DOI: 10.1088/1742-6596/1386/1/012039.
  • Niltharach, A.; Kityakarn, S.; Worayingyong, A.; Thienprasert, J. T.; Klysubun, W.; Songsiriritthigul, P.; Limpijumnong, S. Structural Characterizations of Sol–Gel Synthesized TiO2 and Ce/TiO2 Nanostructures. Physica B 2012, 407, 2915–2918. DOI: 10.1016/j.physb.2011.08.108.
  • Wang, J.; Yu, J.; Zhu, X.; Kong, X. Z. Preparation of Hollow TiO2 Nanoparticles through TiO2 Deposition on Polystyrene Latex Particles and Characterizations of Their Structure and Photocatalytic Activity. Nanoscale Res. Lett. 2012, 7, 646. DOI: 10.1186/1556-276X-7-646.
  • Spurr, R. A.; Myers, H. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. Anal. Chem. 1957, 29, 760–762. DOI: 10.1021/ac60125a006.
  • Ohtani, B.; Prieto-Mahaney, O. O.; Li, D.; Abe, R. What is Degussa (Evonik) P25? Crystalline Composition Analysis, Reconstruction from Isolated Pure Particles and Photocatalytic Activity Test. J. Photochem. Photobiol., A 2010, 216, 179–182. DOI: 10.1016/j.jphotochem.2010.07.024.
  • Dijkstra, M. F. J.; Michorius, A.; Buwalda, H.; Panneman, H. J.; Winkelman, J. G. M.; Beenackers, A. Comparison of the Efficiency of Immobilized and Suspended Systems in Photocatalytic Degradation. Catal. Today 2001, 66, 487–494. DOI: 10.1016/S0920-5861(01)00257-7.
  • Miranda-García, N.; Suárez, S.; Maldonado, M. I.; Malato, S.; Sánchez, B. Regeneration Approaches for TiO2 Immobilized Photocatalyst Used in the Elimination of Emerging Contaminants in Water. Catal. Today. 2014, 230, 27–34. doi:10.1016/j.cattod.2013.12.048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.