Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 8
139
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Technical and economic aspects of a sequential MF + NF + zeolite system treating landfill leachate

, , & ORCID Icon
Pages 675-684 | Received 07 Mar 2022, Accepted 07 Jul 2022, Published online: 24 Jul 2022

References

  • Bandala, E. R.; Liu, A.; Wijesiri, B.; Zeidman, A. B.; Goonetilleke, A. Emerging Materials and Technologies for Landfill Leachate Treatment: A Critical Review. Environ. Pollut. 2021, 291, 118133. DOI: 10.1016/j.envpol.2021.118133.
  • Chen, W.; Gu, Z.; Ran, G.; Li, Q. Application of Membrane Separation Technology in the Treatment of Leachate in China: A Review. Waste Manag. 2021, 121, 127–140.
  • Costa, A. M.; Alfaia, RGdSM.; Campos, J. C. Landfill Leachate Treatment in Brazil – An Overview. J. Environ. Manage. 2019, 232, 110–116.
  • Chaudhari, L. B.; Murthy, Z. V. P. Treatment of Landfill Leachates by Nanofiltration. J. Environ. Manage. 2010, 91, 1209–1217.
  • de Almeida R.; Souza Couto, J. d.; Gouvea, R. M.; Almeida Oroski, F. d.; Bila, D. M.; Quintaes, B. R.; Campos, J. C. Nanofiltration Applied to the Landfill Leachate Treatment and Preliminary Cost Estimation. Waste Manag. Res. J. a Sustain. Circ. Econ 2020, 38(10), 1119–1128
  • Peter-Varbanets, M.; Zurbrügg, C.; Swartz, C.; Pronk, W. Decentralized Systems for Potable Water and the Potential of Membrane Technology. Water Res. 2009, 43, 245–265.
  • Jafari, M.; Vanoppen, M.; Agtmaal, J. M. C.; van; Cornelissen, E. R.; Vrouwenvelder, J. S.; Verliefde, A.; Loosdrecht, M. C. M.; van; Picioreanu, C. Cost of Fouling in Full-Scale Reverse Osmosis and Nanofiltration Installations in The Netherlands. Desalination 2021, 500, 114865. DOI: 10.1016/j.desal.2020.114865.
  • Amaral, M. C. S.; Pereira, H. V.; Nani, E.; Lange, L. C. Treatment of Landfill Leachate by Hybrid Precipitation/Microfiltration/Nanofiltration Process. Water Sci. Technol. 2015, 72, 269–276.
  • Argun, M. E. E.; Akkuş, M.; Ateş, H. Investigation of Micropollutants Removal from Landfill Leachate in a Full-Scale Advanced Treatment Plant in Istanbul City. Turkey. Sci. Total Environ. 2020, 748, 141423. DOI: 10.1016/j.scitotenv.2020.141423.
  • Yaman, C.; Ozcan, H. K. K.; Demir, G.; Okten, H. E.; Yildiz, S.; Coban, A.; Balahorli, V. Landfill Leachate Treatment: A Case Study for Istanbul City. Clean Soil Air Water 2012, 40, 706–711. DOI: 10.1002/clen.201100132.
  • Genethliou, C.; Triantaphyllidou, I. E.; Giannakis, D.; Papayianni, M.; Sygellou, L.; Tekerlekopoulou, A. G.; Koutsoukos, P.; Vayenas, D. V. Simultaneous Removal of Ammonium Nitrogen, Dissolved Chemical Oxygen Demand and Color from Sanitary Landfill Leachate Using Natural Zeolite. J. Hazard Mater. 2021, 406, 124679.
  • Lins, C.; Alves, M. C. M.; Campos, J. C.; Silva, F. M. S.; Jucá, J. F. T.; Lins, E. A. M. Removal of Ammonia Nitrogen from Leachate of Muribeca Municipal Solid Waste Landfill, Pernambuco, Brazil, Using Natural Zeolite as Part of a Biochemical System. J. Environ. Sci. Heal. – Part A Toxic/Hazardous Subst. Environ. Eng. 2015, 50, 980–988.
  • Brasil, Y. L.; Silva, A. F. R.; Gomes, R. F.; Amaral, M. C. S. Technical and Economic Evaluation of the Integration of Membrane Bioreactor and Air-Stripping/Absorption Processes in the Treatment of Landfill Leachate. Waste Manag. 2021, 134, 110–119.
  • Hamid, M. A. A.; Aziz, H. A.; Yusoff, M. S.; Rezan, S. A. A Continuous Clinoptilolite Augmented SBR-Electrocoagulation Process to Remove Concentrated Ammonia and Colour in Landfill Leachate. Environ. Technol. Innov. 2021, 23, 101575. DOI: 10.1016/j.eti.2021.101575.
  • Shadi, A. M. H.; Kamaruddin, M. A.; Niza, N. M. M.; Emmanuel, M. I.; Ismail, N.; Hossain, S. Effective Removal of Organic and Inorganic Pollutants from Stabilized Sanitary Landfill Leachate Using a Combined Fe2O3 Nanoparticles/Electroflotation Process. J. Water Process Eng. 2021, 40, 101988. DOI: 10.1016/j.jwpe.2021.101988.
  • Song, J.; Zhang, W.; Gao, J.; Hu, X.; Zhang, C.; He, Q.; Yang, F.; Wang, H.; Wang, X.; Zhan, X. A Pilot-Scale Study on the Treatment of Landfill Leachate by a Composite Biological System under Low Dissolved Oxygen Conditions: Performance and Microbial Community. Bioresour. Technol. 2020, 296, 122344. DOI: 10.1016/j.biortech.2019.122344.
  • Frank Valle-Riestra, J. Project Evaluation in the Chemical Process Industries. McGraw-Hill College: the University of Michigan, 1983; 731pp.
  • Metcalf, E.; Eddy, H. Wastewater Engineering: treatment and Reuse; McGraw-Hill Education: Boston, 2003; p. 1819.
  • Panagopoulos, A. Beneficiation of Saline Effluents from Seawater Desalination Plants: Fostering the Zero Liquid Discharge (ZLD) approach - A Techno-Economic Evaluation. J. Environ. Chem. Eng. 2021, 9, 105338. DOI: 10.1016/j.jece.2021.105338.
  • Salehi, E.; Madaeni, S. S.; Shamsabadi, A. A.; Laki, S. Applicability of Ceramic Membrane Filters in Pretreatment of Coke-Contaminated Petrochemical Wastewater: Economic Feasibility Study. Ceram. Int. 2014, 40, 4805–4810. DOI: 10.1016/j.ceramint.2013.09.029.
  • Samhaber, W. M.; Nguyen, M. T. Applicability and Costs of Nanofiltration in Combination with Photocatalysis for the Treatment of Dye House Effluents. Beilstein J. Nanotechnol .2014, 5, 476–484.
  • Sethi, S. Transient Permeate Flux Analysis, Cost Estimation, and Design Optimization in Crossflow Membrane Filtration. 1997.
  • Weschenfelder, S. E.; Mello, A. C. C.; Borges, C. P.; Campos, J. C. Oilfield Produced Water Treatment by Ceramic Membranes: Preliminary Process Cost Estimation. Desalination 2015, 360, 81–86. DOI: 10.1016/j.desal.2015.01.015.
  • Gripa, E.; Campos, J. C.; Fonseca, F. V. da. Combination of Ozonation and Microfiltration to Condition Landfill Leachate for Reverse Osmosis Treatment. J. Water Process Eng 2021, 43, 102264. DOI: 10.1016/j.jwpe.2021.102264.
  • Almeida, R. d.; Campos, J.; Oroski, FdA Techno-Economic Evaluation of Landfill Leachate Treatment by Hybrid Lime Application and Nanofiltration Process. Detritus 2020, 10, 170–181. DOI: 10.31025/2611-4135/2020.13897.
  • De Almeida, R.; De; Campos, J. C. Análise Tecnoeconômica Do Tratamento de Lixiviado de Aterro Sanitário. Rev. Ineana 2020, 8(1) 6–27.
  • Piatkiewicz, W.; Biemacka, E.; Suchecka, T. A Polish Study: treating Landfill Leachate with Membranes. Filtr. Sep. 2001, 38, 22–26. DOI: 10.1016/S0015-1882(01)80377-3.
  • Brazil. Conselho Nacional de Meio Ambiente Resolução CONAMA N° 430/2011. Dispõe sobre condições e padrões de lançamento de efluentes, complementa e altera a Resolução no 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente - CONAMA. Brasília: Ministério do Meio Ambiente, 2011 (In Portuguese).
  • APHA/AWWA/WEF. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, 2012; 1360 pp.
  • Almeida, R. d.; Bila, D. M.; Quintaes, B. R.; Campos, J. C. Cost Estimation of Landfill Leachate Treatment by Reverse Osmosis in a Brazilian Landfill. Waste Manag. Res. 2020, 38, 1087–1092. DOI: 10.1177/0734242X20928411.
  • Karadag, D.; Tok, S.; Akgul, E.; Turan, M.; Ozturk, M.; Demir, A. Ammonium Removal from Sanitary Landfill Leachate Using Natural Gördes Clinoptilolite. J. Hazard Mater. 2008, 153, 60–66.
  • Singh, N.; Cheryan, M. Process Design and Economic Analysis of a Ceramic Membrane System for Microfiltration of Corn Starch Hydrolysate. J. Food Eng. 1998, 38, 57–67. DOI: 10.1016/S0260-8774(98)00103-4.
  • Sprynskyy, M.; Lebedynets, M.; Zbytniewski, R.; Namiesnik, J.; Buszewski, B. Ammonium Removal from Aqueous Solution by Natural Zeolite, Transcarpathian Mordenite, Kinetics, Equilibrium and Column Tests. Sep. Purif. Technol. 2005, 46, 155–160. DOI: 10.1016/j.seppur.2005.05.004.
  • Almeida, R. d.; Bila, D. M.; Quintaes, B. R.; Campos, J. C. Cost Estimation of Landfill Leachate Treatment by Reverse Osmosis in a Brazilian Landfill. Waste Manag. Res. J. a Sustain. Circ. Econ. 2020, 38, 1087–1092.
  • Baker, R. W. W. Membrane Technology and Applications il; Newark: Wiley, 2012; p 575.
  • Couto, J. M. S.; Souza, A. D. L.; Machado, A.; de; Almeida, C. R.; de, R.; Salomão, S.; de, A. L.; Campos, J. C. Adsorption of Bisphenol S from Aqueous Solution on Powdered Activated Carbon and Chronic Toxicity Evaluation with Microcrustacean Ceriodaphnia Dubia. J. Water Process Eng. 2020, 37, 101490. DOI: 10.1016/j.jwpe.2020.101490.
  • Amaral, M. C. S.; Moravia, W. G.; Lange, L. C.; Zico, M. R.; Magalhães, N. C.; Ricci, B. C.; Reis, B. G. Pilot Aerobic Membrane Bioreactor and Nanofiltration for Municipal Landfill Leachate Treatment. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng 2016, 51, 640–649.
  • Wu, D.; Howell, J. A.; Field, R. W. W. Critical Flux Measurement for Model Colloids. J. Memb. Sci. 1999, 152, 89–98. DOI: 10.1016/S0376-7388(98)00200-2.
  • Youravong, W.; Lewis, M. J.; Grandison, A. S. Critical Flux in Ultrafiltration of Skimmed Milk. Food Bioprod. Process 2003, 81, 303–308. DOI: 10.1205/096030803322756385.
  • Collado, S.; Núñez, D.; Oulego, P.; Riera, F. A.; Díaz, M. Effect of Landfill Leachate Ageing on Ultrafiltration Performance and Membrane Fouling Behaviour. J. Water Process Eng. 2020, 36, 101291. DOI: 10.1016/j.jwpe.2020.101291.
  • Ang, W. L.; Nordin, D.; Mohammad, A. W.; Benamor, A.; Hilal, N. Effect of Membrane Performance Including Fouling on Cost Optimization in Brackish Water Desalination Process. Chem. Eng. Res. Des. 2017, 117, 401–413. DOI: 10.1016/j.cherd.2016.10.041.
  • Seidel, A.; Elimelech, M. Coupling between Chemical and Physical Interactions in Natural Organic Matter (NOM) Fouling of Nanofiltration Membranes: Implications for Fouling Control. J. Memb. Sci 2002, 203, 245–255. DOI: 10.1016/S0376-7388(02)00013-3.
  • Bortoluzzi, A. C.; Faitão, J. A.; Luccio, M.; Di; Dallago, R. M. M.; Steffens, J.; Zabot, G. L.; Tres, M. V. Dairy Wastewater Treatment Using Integrated Membrane Systems. J. Environ. Chem. Eng. 2017, 5, 4819–4827. DOI: 10.1016/j.jece.2017.09.018.
  • Couto, C. F.; Moravia, W. G.; Amaral, M. C. S. Integration of Microfiltration and Nanofiltration to Promote Textile Effluent Reuse. Clean Techn. Environ. Policy 2017, 19, 2057–2073. DOI: 10.1007/s10098-017-1388-z.
  • Tundis, R.; Conidi, C.; Loizzo, M. R.; Sicari, V.; Cassano, A. Olive Mill Wastewater Polyphenol-Enriched Fractions by Integrated Membrane Process: A Promising Source of Antioxidant, Hypolipidemic and Hypoglycaemic Compounds. Antioxidants 2020, 9, 602. DOI: 10.3390/antiox9070602.
  • Renou, S.; Givaudan, J. G. G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill Leachate Treatment: Review and Opportunity. J. Hazard Mater. 2008, 150, 468–493.
  • Temel, F. A. A.; Kuleyin, A. Ammonium Removal from Landfill Leachate Using Natural Zeolite: kinetic, Equilibrium, and Thermodynamic Studies.Desalin. Water Treat. 2016, 57(50), 23873–23892.
  • Karri, R. R.; Sahu, J. N. N.; Chimmiri, V. Critical Review of Abatement of Ammonia from Wastewater. J. Mol. Liq. 2018, 261, 21–31. DOI: 10.1016/j.molliq.2018.03.120.
  • Jorgensen, T. C.; Weatherley, L. R. Ammonia Removal from Wastewater by Ion Exchange in the Presence of Organic Contaminants. Water Res. 2003, 37, 1723–1728.
  • Wang, Y.; Liu, S.; Xu, Z.; Han, T.; Chuan, S.; Zhu, T. Ammonia Removal from Leachate Solution Using Natural Chinese Clinoptilolite. J. Hazard Mater. 2006, 136, 735–740.
  • Abdul, A.; Abdul, H.; Azmi, M.; Johari, M.; Shah, K. Comparison Study of Ammonia and COD Adsorption on Zeolite, Activated Carbon and Composite Materials in Land fi ll Leachate Treatment. Desalination. 2010, 262, 31–35.
  • Aziz, H. A.; Fauzi, A.; Noor, M.; Wei, Y.; Motasem, K.; Azhar, Y. D. A.; Hamid, A. Heat Activated Zeolite for the Reduction of Ammoniacal Nitrogen, Colour, and COD in Landfill Leachate. Int. J. Environ. Res. 2020, 14, 463–478. DOI: 10.1007/s41742-020-00270-5.
  • Poblete, R.; Oller, I.; Maldonado, M. I.; Luna, Y.; Cortes, E. Cost Estimation of COD and Color Removal from Landfill Leachate Using Combined Coffee-Waste Based Activated Carbon with Advanced Oxidation Processes. J. Environ. Chem. Eng. 2017, 5, 114–121. DOI: 10.1016/j.jece.2016.11.023.
  • Tripathy, B. K.; Kumar, M. Sequential Coagulation/Flocculation and Microwave-Persulfate Processes for Landfill Leachate Treatment: Assessment of Bio-Toxicity, Effect of Pretreatment and Cost-Analysis. Waste Manag. 2019, 85, 18–29.
  • Santos, H. d.; Castilhos Júnior, A. B.; de Nadaleti, W. C.; Lourenço, V. A. Ammonia Recovery from Air Stripping Process Applied to Landfill Leachate Treatment. Environ. Sci. Pollut. Res. Int. 2020, 27, 45108–45120.
  • Ghaffariraad, M.; Ghanbarzadeh, M. Land fi ll Leachate Treatment through Coagulation- fl Occulation with Lime and Bio-Sorption by Walnut-Shell. Environ. Manag. 2021, 68, 226–239. DOI: 10.1007/s00267-021-01489-4.
  • Ye, Z.; Hong, Y.; Pan, S.; Huang, Z.; Chen, S.; Wang, W. Full-Scale Treatment of Landfill Leachate by Using the Mechanical Vapor Recompression Combined with Coagulation Pretreatment. Waste Manag. 2017, 66, 88–96.
  • Kattel, E.; Kivi, A.; Klein, K.; Tenno, T.; Dulova, N. Hazardous. Waste Landfill Leachate Treatment by Combined Chemical and Biological Techniques. Desalin. Water Treat. 2016, 57(28), 13236–13245.
  • Anfruns, A.; Gabarró, J.; Gonzalez-Olmos, R.; Puig, S.; Balaguer, M. D.; Colprim, J. Coupling Anammox and Advanced Oxidation-Based Technologies for Mature Landfill Leachate Treatment. J. Hazard Mater. 2013, 258-259, 27–34. DOI: 10.1016/j.jhazmat.2013.04.027.
  • Mojiri, A.; Zhou, J. L.; Ratnaweera, H.; Ohashi, A.; Ozaki, N.; Kindaichi, T.; Asakura, H. Treatment of Landfill Leachate with Different Techniques: An Overview. J. Water Reuse Desalin. 2021, 11, 66–96. DOI: 10.2166/wrd.2020.079.
  • Babaei, S.; Sabour, M. R.; Moftakhari Anasori Movahed, S. Moftakhari Anasori Movahed, S. Combined Landfill Leachate Treatment Methods: An Overview. Environ. Sci. Pollut. Res. 2021, 28, 59594–59607. DOI: 10.1007/s11356-021-16358-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.