Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 8
217
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Chlorine efficacy against bacteriophage Phi6, a surrogate for enveloped human viruses, on porous and non-porous surfaces at varying temperatures and humidity

ORCID Icon, , &
Pages 685-693 | Received 13 May 2022, Accepted 07 Jul 2022, Published online: 01 Aug 2022

References

  • Poranen, M. M.; Mäntynen, S. ICTV Report Consortium. ICTV Virus Taxonomy Profile: Cystoviridae. J. Gen. Virol. 2017, 98, 2423–2424. DOI: 10.1099/jgv.0.000928.
  • Laurinavičius, S.; Käkelä, R.; Bamford, D. H.; Somerharju, P. The Origin of Phospholipids of the Enveloped Bacteriophage phi6. Virology 2004, 326, 182–190. DOI: 10.1016/j.virol.2004.05.021.
  • Vidaver, A. K.; Koski, R. K.; Van Etten, J. L. Bacteriophage φ6: A Lipid-Containing Virus of Pseudomonas phaseolicola1. J. Virol. 1973, 11, 799–805. DOI: 10.1128/JVI.11.5.799-805.1973.
  • Poranen, M. M.; Tuma, R. Self-Assembly of Double-Stranded RNA Bacteriophages. Virus Res. 2004, 101, 93–100. DOI: 10.1016/j.virusres.2003.12.009.
  • Aquino de Carvalho, N.; Stachler, E. N.; Cimabue, N.; Bibby, K. Evaluation of Phi6 Persistence and Suitability as an Enveloped Virus Surrogate. Environ. Sci. Technol. 2017, 51, 8692–8700. DOI: 10.1021/acs.est.7b01296.
  • Ford, B. E. Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence. Dissertation, 2015.
  • Casanova, L. M.; Waka, B. Survival of a Surrogate Virus on N95 Respirator Material. Infect. Control. Hosp. Epidemiol. 2013, 34, 1334–1335. DOI: 10.1086/673994.
  • Vatter, P.; Hoenes, K.; Hessling, M. Photoinactivation of the Coronavirus Surrogate phi6 by Visible Light. Photochem. Photobiol. 2021, 97, 122–125. DOI: 10.1111/php.13352.
  • Whitworth, C.; Mu, Y.; Houston, H.; Martinez-Smith, M.; Noble-Wang, J.; Coulliette-Salmond, A.; Rose, L. Persistence of Bacteriophage Phi 6 on Porous and Nonporous Surfaces and the Potential for Its Use as an Ebola Virus or Coronavirus Surrogate. Appl. Environ. Microbiol. 2020, 86, e01482-20. aem/86/17/AEM.01482-20.atom. DOI: 10.1128/AEM.01482-20.
  • Prussin, A. J.; Schwake, D. O.; Lin, K.; Gallagher, D. L.; Buttling, L.; Marr, L. C. Survival of the Enveloped Virus Phi6 in Droplets as a Function of Relative Humidity, Absolute Humidity, and Temperature. Appl. Environ. Microbiol. 2018, 84,
  • Silverman, A. I.; Boehm, A. B. Systematic Review and Meta-Analysis of the Persistence and Disinfection of Human Coronaviruses and Their Viral Surrogates in Water and Wastewater. Environ. Sci. Technol. Lett. 2020.
  • Bedrosian, N.; Mitchell, E.; Rohm, E.; Rothe, M.; Kelly, C.; String, G.; Lantagne, D. A Systematic Review of Surface Contamination, Stability, and Disinfection Data on SARS-CoV-2 (through July 10, 2020). Environ. Sci. Technol. 2021, 55, 4162–4173.
  • String, G. M.; White, M. R.; Gute, D. M.; Mühlberger, E.; Lantagne, D. S. Selection of a SARS-CoV-2 Surrogate for Use in Surface Disinfection Efficacy Studies with Chlorine and Antimicrobial Surfaces. Environ. Sci. Technol. Lett. 2021, 8, 995–1001. DOI: 10.1021/acs.estlett.1c00593.
  • Adcock, N. J.; Rice, E. W.; Sivaganesan, M.; Brown, J. D.; Stallknecht, D. E.; Swayne, D. E. The Use of Bacteriophages of the Family Cystoviridae as Surrogates for H5N1 Highly Pathogenic Avian Influenza Viruses in Persistence and Inactivation Studies. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2009, 44, 1362–1366. DOI: 10.1080/10934520903217054.
  • Turgeon, N.; Toulouse, M.-J.; Martel, B.; Moineau, S.; Duchaine, C. Comparison of Five Bacteriophages as Models for Viral Aerosol Studies. Appl. Environ. Microbiol. 2014, 80, 4242–4250. DOI: 10.1128/AEM.00767-14.
  • Casanova, L. m.; Weaver, S. r Evaluation of Eluents for the Recovery of an Enveloped Virus from Hands by Whole-Hand Sampling. J. Appl. Microbiol. 2015, 118, 1210–1216. DOI: 10.1111/jam.12777.
  • Phillpotts, R. J.; Thomas, R. J.; Beedham, R. J.; Platt, S. D.; Vale, C. A. The Cystovirus phi6 as a Simulant for Venezuelan Equine Encephalitis Virus. Aerobiologia 2010, 26, 301–309. DOI: 10.1007/s10453-010-9166-y.
  • Gallandat, K.; Lantagne, D. Selection of a Biosafety Level 1 (BSL-1) Surrogate to Evaluate Surface Disinfection Efficacy in Ebola Outbreaks: Comparison of Four Bacteriophages. PLoS One. 2017, 12, e0177943. DOI: 10.1371/journal.pone.0177943.
  • Casanova, L. M.; Weaver, S. R. Inactivation of an Enveloped Surrogate Virus in Human Sewage. Environ. Sci. Technol. Lett. 2015, 2, 76–78. DOI: 10.1021/acs.estlett.5b00029.
  • Wolfe, M. K.; Gallandat, K.; Daniels, K.; Desmarais, A. M.; Scheinman, P.; Lantagne, D. Handwashing and Ebola Virus Disease Outbreaks: A Randomized Comparison of Soap, Hand Sanitizer, and 0.05% Chlorine Solutions on the Inactivation and Removal of Model Organisms Phi6 and E. coli from Hands and Persistence in Rinse Water. PLoS One. 2017, 12, e0172734. DOI: 10.1371/journal.pone.0172734.
  • Gallandat, K.; Wolfe, M. K.; Lantagne, D. Surface Cleaning and Disinfection: Efficacy Assessment of Four Chlorine Types Using Escherichia coli and the Ebola Surrogate Phi6. Environ. Sci. Technol. 2017, 51, 4624–4631. DOI: 10.1021/acs.est.6b06014.
  • Lin, K.; Marr, L. C. Aerosolization of Ebola Virus Surrogates in Wastewater Systems. Environ. Sci. Technol. 2017, 51, 2669–2675.
  • Sinclair, R. G.; Rose, J. B.; Hashsham, S. A.; Gerba, C. P.; Haas, C. N. Criteria for Selection of Surrogates Used to Study the Fate and Control of Pathogens in the Environment. Appl. Environ. Microbiol. 2012, 78, 1969–1977. DOI: 10.1128/AEM.06582-11.
  • Lin, K.; Schulte, C. R.; Marr, L. C. Survival of MS2 and Φ6 Viruses in Droplets as a Function of Relative Humidity, pH, and Salt, Protein, and Surfactant Concentrations. PLoS One. 2020, 15, e0243505. DOI: 10.1371/journal.pone.0243505.
  • Nastasi, N.; Renninger, N.; Bope, A.; Cochran, S. J.; Greaves, J.; Haines, S. R.; Balasubrahmaniam, N.; Stuart, K.; Panescu, J.; Bibby, K.; et al. Persistence of Viable MS2 and Phi6 Bacteriophages on Carpet and Dust. Indoor Air. 2022, 32, e12969. DOI: 10.1111/ina.12969.
  • Bangiyev, R.; Chudaev, M.; Schaffner, D. W.; Goldman, E. Higher Concentrations of Bacterial Enveloped Virus Phi6 Can Protect the Virus from Environmental Decay. Appl. Environ. Microbiol. 2021, 87, e01371–21. DOI: 10.1128/AEM.01371-21.
  • Fedorenko, A.; Grinberg, M.; Orevi, T.; Kashtan, N. Survival of the Enveloped Bacteriophage Phi6 (a Surrogate for SARS-CoV-2) in Evaporated Saliva Microdroplets Deposited on Glass Surfaces. Sci. Rep. 2020, 10, 22419. DOI: 10.1038/s41598-020-79625-z.
  • Yang, W.; Elankumaran, S.; Marr, L. C. Relationship between Humidity and Influenza a Viability in Droplets and Implications for Influenza’s Seasonality. PLoS One. 2012, 7, e46789. DOI: 10.1371/journal.pone.0046789.
  • Howard, G.; Bartram, J.; Brocklehurst, C.; Colford, J. M.; Costa, F.; Cunliffe, D.; Dreibelbis, R.; Eisenberg, J. N. S.; Evans, B.; Girones, R.; et al. COVID-19: Urgent Actions, Critical Reflections and Future Relevance of ‘WaSH’: Lessons for the Current and Future Pandemics. J. Water Healt, 2018, 18 (5):613–630.
  • Yates, T.; Vujcic, J. A.; Joseph, M. L.; Gallandat, K.; Lantagne, D. Water, Sanitation, and Hygiene Interventions in Outbreak Response: A Synthesis of Evidence. Waterlines 2018, 37, 5–30. DOI: 10.3362/1756-3488.17-00015.
  • WHO. Water, sanitation, hygiene, and waste management for SARS-CoV-2, the virus that causes COVID-19: Interim guidance. 2020.
  • CDC. Cleaning and Disinfecting Your Home: Everyday Steps and Extra Steps When Someone is Sick. https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/disinfecting-your-home.html. (accessed Mar. 2021).
  • Wigginton, K. R.; Kohn, T. Virus Disinfection Mechanisms: The Role of Virus Composition, Structure, and Function. Curr. Opin. Virol. 2012, 2, 84–89. DOI: 10.1016/j.coviro.2011.11.003.
  • Wigginton, K. R.; Pecson, B. M.; Sigstam, T.; Bosshard, F.; Kohn, T. Virus Inactivation Mechanisms: Impact of Disinfectants on Virus Function and Structural Integrity. Environ. Sci. Technol. 2012, 46, 12069–12078.
  • Gallandat, K.; Kolus, R. C.; Julian, T. R.; Lantagne, D. S. A Systematic Review of Chlorine-Based Surface Disinfection Efficacy to Inform Recommendations for Low-Resource Outbreak Settings. American J. Infect. Control. 2021, 49(1):90–103.
  • Ye, Y.; Chang, P. H.; Hartert, J.; Wigginton, K. R. Reactivity of Enveloped Virus Genome, Proteins, and Lipids with Free Chlorine and UV254. Environ. Sci. Technol. 2018, 52, 7698–7708.
  • Brown, T. Inactivation of Bacteriophage Φ6 on Tyvek Suit Surfaces by Chemical Disinfection, Thesis. 2015.
  • String, G. M.; Gutiérrez, E. V.; Lantagne, D. S. Laboratory Efficacy of Surface Disinfection Using Chlorine against Vibrio cholerae. J. Water Health 2020, 18, 1009–1019. DOI: 10.2166/wh.2020.199.
  • Iqbal, Q.; Lubeck-Schricker, M.; Wells, E.; Wolfe, M. K.; Lantagne, D. Shelf-Life of Chlorine Solutions Recommended in Ebola Virus Disease Response. PLoS One. 2016, 11, e0156136. DOI: 10.1371/journal.pone.0156136.
  • ASTM E35 Committee. E2197: Quantitative Disk Carrier Test Method for Determining Bactericidal, Virucidal, Fungicidal, Mycobactericidal, and Sporicidal Activities of Chemicals. 2018.
  • Adams, M. Bacteriophages. Interscience Publishers division of John Wiley & Sons, Inc.: New York, NY, USA, 1959.
  • Rossi, P. Advances in biological tracer techniques for hydrology and hydrogeology using bacteriophages: Optimization of the methods and investigation of the behavior of bacterial viruses in surface waters and in porous and fractured aquifers. Ph.D. Dissertation, University of Neuchâtel, Neuchâtel, Switzerland, 1995. https://doc.rero.ch/record/2576/files/these_RossiP.pdf (accessed 2020-08-31).
  • Bonilla, N.; Rojas, M. I.; Cruz, G. N. F.; Hung, S.-H.; Rohwer, F.; Barr, J. J. Phage on Tap–a Quick and Efficient Protocol for the Preparation of Bacteriophage Laboratory Stocks. Peer J. 2016, 4, e2261. DOI: 10.7717/peerj.2261.
  • Engineering Toolbox. Saturated Salt Solutions and control of Air Humidity. https://www.engineeringtoolbox.com/salt-humidity-d_1887.html. (accessed Jan. 2022).
  • USEPA OCSPP. Product Performance Test Guidelines. OCSPP 810.2200: Disinfectants for Use on Environmental Surfaces. Guidance Efficacy Testing. 2018.
  • Wood, J. P.; Richter, W.; Sunderman, M.; Calfee, M. W.; Serre, S.; Mickelsen, L. Evaluating the Environmental Persistence and Inactivation of MS2 Bacteriophage and the Presumed Ebola Virus Surrogate Phi6 Using Low Concentration Hydrogen Peroxide Vapor. Environ. Sci. Technol. 2020, 54, 3581–3590.
  • Molan, K.; Rahmani, R.; Krklec, D.; Brojan, M.; Stopar, D. Phi 6 Bacteriophage Inactivation by Metal Salts, Metal Powders, and Metal Surfaces. Viruses 2022, 14, 204. DOI: 10.3390/v14020204.
  • Smither, S.; Phelps, A.; Eastaugh, L.; Ngugi, S.; O’Brien, L.; Dutch, A.; Lever, M. S. Effectiveness of Four Disinfectants against Ebola Virus on Different Materials. Viruses 2016, 8, 185. DOI: 10.3390/v8070185.
  • Wang, X.; Tarabara, V. V. Virus Adhesion to Archetypal Fomites: A Study with Human Adenovirus and Human Respiratory Syncytial Virus. Chem. Engng. J. 2022, 429, 132085. DOI: 10.1016/j.cej.2021.132085.
  • Tuladhar, E.; Hazeleger, W. C.; Koopmans, M.; Zwietering, M. H.; Beumer, R. R.; Duizer, E. Residual Viral and Bacterial Contamination of Surfaces after Cleaning and Disinfection. Appl. Environ. Microbiol. 2012, 78, 7769–7775.
  • Fischer, R. J.; Judson, S. D.; Miazgowicz, K.; Bushmaker, T.; Prescott, J. B.; Munster, V. J. Ebola Virus Stability on Surfaces and in Fluids in Simulated Outbreak Environments. Emerg. Infect. Dis. 2015, 21, 1243–1246. DOI: 10.3201/eid2107.150253.
  • Wardzala, C. L.; Wood, A. M.; Belnap, D. M.; Kramer, J. R. Mucins Inhibit Coronavirus Infection in a Glycan-Dependent Manner. ACS Cent. Sci. 2022, 8, 351–360. DOI: 10.1021/acscentsci.1c01369.
  • Eccles, R. Respiratory Mucus and Persistence of Virus on Surfaces. J. Hosp. Infect. 2020, 105, 350. DOI: 10.1016/j.jhin.2020.03.026.
  • Cook, B. W. M.; Cutts, T. A.; Nikiforuk, A. M.; Poliquin, P. G.; Court, D. A.; Strong, J. E.; Theriault, S. S. Evaluating Environmental Persistence and Disinfection of the Ebola Virus Makona Variant. Viruses 2015, 7, 1975–1986. DOI: 10.3390/v7041975.
  • Sterk, E. Filovirus Haemorrhagic Fever Guideline. 2008, vol. 134,
  • Lombardi, M. E.; Ladman, B. S.; Alphin, R. L.; Benson, E. R. Inactivation of Avian Influenza Virus Using Common Detergents and Chemicals. Avian Dis. 2008, 52, 118–123. DOI: 10.1637/8055-070907-Reg.
  • Park, G. W.; Boston, D. M.; Kase, J. A.; Sampson, M. N.; Sobsey, M. D. Evaluation of Liquid- and Fog-Based Application of Sterilox Hypochlorous Acid Solution for Surface Inactivation of Human Norovirus. Appl. Environ. Microbiol. 2007, 73, 4463–4468. DOI: 10.1128/AEM.02839-06.
  • Baek, S.-B.; Kim, S.-W.; Ha, S.-D. Reduction of Escherichia coli on Surfaces of Utensils and Development of a Predictive Model as a Function of Concentration and Exposure Time of Chlorine. Foodborne Pathogen. Dis. 2012, 9, 1–6. DOI: 10.1089/fpd.2011.0910.
  • Krug, P. W.; Larson, C. R.; Eslami, A. C.; Rodriguez, L. L. Disinfection of Foot-and-Mouth Disease and African Swine Fever Viruses with Citric Acid and Sodium Hypochlorite on Birch Wood Carriers. Vet. Microbiol. 2012, 156, 96–101. DOI: 10.1016/j.vetmic.2011.10.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.