Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 8
216
Views
1
CrossRef citations to date
0
Altmetric
Research Article

QuEChERS-based analysis and ecotoxicological risk of select antibiotics in dumpsite leachates, hospital wastewater and effluent receiving water in Ibadan, Nigeria

ORCID Icon, , &
Pages 709-722 | Received 21 Apr 2022, Accepted 07 Jul 2022, Published online: 26 Jul 2022

References

  • Monahan, C.; Nag, R.; Morris, D.; Cummins, E. Antibiotic Residues in the Aquatic Environment–Current Perspective and Risk Considerations. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2021, 56, 733–751. DOI: 10.1080/10934529.2021.1923311.
  • Aydin, S.; Aydin, M. E.; Ulvi, A.; Kiliç, H. Antibiotics in Hospital Effluents: Occurrence, Contribution to Urban Wastewater, Removal in a Wastewater Treatment Plant, and Environmental Risk Assessment. Environ. Sci. Pollut Res. Int. 2019, 26, 544–558. DOI: 10.1007/s11356-018-3563-0.
  • Kümmerer, K. Antibiotics in the Aquatic Environment- a Review–Part I. Chemosphere 2009, 75, 417–434. DOI: 10.1016/j.chemosphere.2008.11.086.
  • Quoc Tuc, D.; Elodie, M.; Pierre, L.; Fabrice, A.; Marie-Jeanne, T.; Martine, B.; Joelle, E.; Marc, C. Fate of Antibiotics from Hospital and Domestic Sources in a Sewage Network. Sci. Total Environ. 2017, 575, 758–766. DOI: http://doi.org/10.1016/j.scitotenv.2016.09.118.
  • Ajibola, A. S.; Amoniyan, O. A.; Ekoja, F. O.; Ajibola, F. O. QuEChERS Approach for the Analysis of Three Fluoroquinolone Antibiotics in Wastewater: Concentration Profiles and Ecological Risk in Two Nigerian Hospital Wastewater Treatment Plants. Arch. Environ. Contam. Toxicol. 2021, 80, 389–401. DOI: 10.1007/s00244-020-00789-w.
  • Verlicchi, P.; Al Aukidy, M.; Galletti, A.; Petrovic, M.; Barceló, D. Hospital Effluent: Investigation of the Concentrations and Distribution of Pharmaceuticals and Environmental Risk Assessment. Sci. Total Environ. 2012, 430, 109–118. DOI: 10.1016/j.scitotenv.2012.04.055.
  • Zhang, R.; Yang, S.; An, Y. W.; Wang, Y. Q.; Lei, Y.; Song, L. Y. Antibiotics and Antibiotic Resistance Genes in Landfills: A Review. Sci Total Environ. 2022, 806, 150647. DOI: 10.1016/j.scitotenv.2021.150647.
  • Wang, Y.; Lei, Y.; Liu, X.; Song, L.; Hamid, N.; Zhang, R. Sulfonamide and Tetracycline in Landfill Leachates from Seven Municipal Solid Waste (MSW) Landfills: Seasonal Variation and Risk Assessment. Sci. Total Environ. 2022, 825, 153936. DOI: http://doi.org/10.1016/j.scitotenv.2022.153936.
  • Xue, X.; Chen, B.; Wang, H.; Fang, C.; Long, Y.; Hu, L. Antibiotics in the Municipal Solid Waste Incineration Plant Leachate Treatment Process. Chem. Ecol. 2021, 37, 633–645. DOI: 10.1080/02757540.2021.1924695.
  • Chung, S. S.; Zheng, J. S.; Burket, S. R.; Brooks, B. W. Select Antibiotics in Leachate from Closed and Active Landfills Exceed Thresholds for Antibiotic Resistance Development. Environ. Int. 2018, 115, 89–96. DOI: 10.1016/j.envint.2018.03.01 = 4.
  • European Medicines Agency. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2017, European Surveillance of Veterinary Antimicrobial Consumption, 2019, (EMA/294674/2019) Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinaryantimicrobial-agents-31-european-countries-2017_en.pdf. (accessed on 8 June 2022).
  • Escudero-oñante, C.; Ferrando-Climent, L.; Rodríguez-Mozaz, S.; Santos, L. H. M. L. M. Occurrence and Risks of Contrast Agents, Cytostatics, and Antibiotics in Hospital Effluents. In Hospital Wastewaters—Characteristics, Management, Treatment and Environmental Risks, Verlicchi, P. (Ed.), Springer International Publishing: Switzerland, 2017. DOI: 10.1007/698_2017_12.
  • Ngigi, A. N.; Magu, M. M.; Muendo, B. M. Occurrence of Antibiotics Residues in Hospital Wastewater, Wastewater Treatment Plant, and in Surface Water in Nairobi County. Kenya. Environ. Monit. Assess. 2020, 192, 18. DOI: 10.1007/s10661-019-7952-8.
  • Yu, X.; Sui, Q.; Lyu, S.; Zhao, W.; Wu, D.; Yu, G.; Barcelo, D. Rainfall Influences Occurrence of Pharmaceutical and Personal Care Products in Landfill Leachates: Evidence from Seasonal Variations and Extreme Rainfall Episodes. Environ. Sci. Technol. 2021, 55, 4822–4830. DOI: 10.1021/acs.est.0c07588.
  • Wang, P. L.; Wu, D.; You, X. X.; Li, W. Y.; Xie, B. Distribution of Antibiotics, Metals and Antibiotic Resistance Genes during Landfilling Process in Major Municipal Solid Waste Landfills. Environ. Pollut. 2019, 255, 113222. DOI: 10.1016/j.envpol.2019.113222.
  • Wu, D.; Huang, Z. T.; Yang, K.; Graham, D.; Xie, B. Relationships between Antibiotics and Antibiotic Resistance Gene Levels in Municipal Solid Waste Leachates in Shanghai, China. Environ. Sci. Technol. 2015, 49, 4122–4128. DOI: 10.1021/es506081z.
  • Fang, C.; Chen, B.; Zhuang, H.; Mao, H. Antibiotics in Leachates from Landfills in Northern Zhejiang Province, China. Bull. Environ. Contam. Toxicol. 2020, 105, 36–40. DOI: 10.1007/s00128-020-02894-x.
  • Borquaye, L. S.; Ekuadzi, E.; Darko, G.; Ahor, H. S.; Nsiah, S. T.; Lartey, J. A.; Mutala, A.; Boamah, V. E.; Woode, E. Occurrence of Antibiotics and Antibiotic-Resistant Bacteria in Landfill Sites in Kumasi, Ghana. J. Chem. 2019, 2019, 1–10. DOI: 10.1155/2019/6934507.
  • Ajibola, A. S. Assessment of Trace and Major Elements Contamination in Waste Soils: Leaching Potential from Active and Closed Landfills in Lagos, Nigeria. J. Environ. Earth Sci. 2016, 6, 8–15.
  • Adelowo, O. O.; Osuntade, A. I. Class 1 Integron, Sulfonamide and Florfenicol Resistance Genes in Bacteria from Three Unsanitary Landfills, Ibadan, Nigeria. J. Microbiol. Infect. Dis. 2019, 9, 34–42. DOI: 10.5799/jmid.537165.
  • Anastassiades, M.; Lehotay, S. J.; Stajnbaher, D.; Schenck, F. J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and Dispersive Solid-Phase Extraction for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. DOI: 10.1093/jaoac/86.2.412.
  • Lehotay, S. J.; Son, K. A.; Kwon, H.; Koesukwiwat, U.; Fu, W.; Mastovska, K.; Hoh, E.; Leepipatpiboon, N. Comparison of QuEChERS Sample Preparation Methods for the Analysis of Pesticide Residues in Fruits and Vegetables. J Chromatogr A. 2010, 1217, 2548–2560. DOI: 10.1016/j.chroma.2010.01.044.
  • Nannou, C.; Ofrydopoulou, A.; Heath, D.; Heath, E.; Lambropoulou, D. QuEChERS-a Green Alternative Approach for the Determination of Pharmaceuticals and Personal Care Products in Environmental and Food Samples. In Green Analytical Chemistry, Green Chemistry and Sustainable Technology, Płotka-Wasylka J., Namieśnik J. (Eds), Springer: Singapore, 2019, pp 395–430. DOI: 10.1007/978-981-13-9105-7_14.
  • Ajibola, A. S.; Tisler, S.; Zwiener, C. Simultaneous Determination of Multiclass Antibiotics in Sewage Sludge Based on QuEChERS Extraction and Liquid Chromatography-Tandem Mass Spectrometry. Anal. Method. 2020, 12, 576–586. DOI: 10.1039/C9AY02188D.
  • Ajibola, A. S.; Fawole, S. T.; Ajibola, F. O.; Adewuyi, G. O. Diclofenac and Ibuprofen Determination in Sewage Sludge Using a QuEChERS Approach: Occurrence and Ecological Risk Assessment in Three Nigerian Wastewater Treatment Plants. Bull. Environ. Contam. Toxicol. 2021, 106, 690–699. DOI: 10.1007/s00128-021-03139-1.
  • Kachhawaha, A. S.; Nagarnaik, P. M.; Jadhav, M.; Pudale, A.; Labhasetwar, P. K.; Banerjee, K. Optimization of a Modified QuEChERS Method for Multiresidue Analysis of Pharmaceuticals and Personal Care Products in Sewage and Surface Water by LC-MS/MS. J. AOAC Int. 2017, 100, 592–597. DOI: 10.5740/jaoacint.17-0060.
  • Gezahegn, T.; Tegegne, B.; Zewge, F.; Chandravanshi, B. S. Salting out Assisted Liquid–Liquid Extraction for the Determination of Ciprofloxacin Residues in Water Samples by High Performance Liquid Chromatography–Diode Array Detector. BMC Chem. 2019, 13, 28. DOI: 10.1186/s13065-019-0543-5.
  • Martínez-Piernas, A. B.; Plaza-Bolaños, P.; Gilabert, A.; Agüera, A. Application of a Fast and Sensitive Method for the Determination of Contaminants of Emerging Concern in Wastewater Using a Quick, Easy, Cheap, Effective, Rugged and Safe-Based Extraction and Liquid Chromatography Coupled to Mass Spectrometry. J. Chromatogr. A. 2021, 1653, 462396. DOI: 10.1016/j.chroma.2021.462396.
  • Wang, Z.; Wang, Y.; Tian, H.; Wei, Q.; Liu, B.; Bao, G.; Liao, M.; Peng, J.; Huang, X.; Wang, L. High through-Put Determination of 28 Veterinary Antibiotic Residues in Swine Wastewater by One-Step Dispersive Solid Phase Extraction Sample Cleanup Coupled with Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Chemosphere 2019, 230, 337–346. DOI: 10.1016/j.chemosphere.2019.05.047.
  • Ajibola, A. S.; Adebiyi, A. O.; Nwaeke, D. O.; Ajibola, F. O.; Adewuyi, G. O. Analysis, Occurrence and Ecological Risk Assessment of Diclofenac and Ibuprofen Residues in Wastewater from Three Wastewater Treatment Plants in South-Western Nigeria. JASEM 2021, 25, 330–340. DOI: https://doi.org/10.4314/jasem.v25i3.5.
  • Esu, E.; Berens-Riha, N.; Pritsch, M.; Nwachuku, N.; Loescher, T.; Meremikwu, M. Intermittent Screening and Treatment with Artemether–Lumefantrine versus Intermittent Preventive Treatment with Sulfadoxine–Pyrimethamine for Malaria in Pregnancy: A Facility-Based, Open-Label, Non-Inferiority Trial in Nigeria. Malar. J. 2018, 17, 251. DOI: 10.1186/s12936-018-2394-2.
  • United States Agency for International Development (USAID). Eliminating malaria in Nigeria: Five ways the USAID’s ‘President’s malaria initiative for states’ is making a difference. 2021. https://www.usaid.gov/news-information/news/eliminating-malaria-nigeria-five-ways-usaid%E2%80%99s-%E2%80%98president%E2%80%99s-malaria-initiative., (accessed on 17/04/2022).
  • Oladejo, O. A.; Otene, I. J. J. Environmental Hazards of Dumpsites in Ibadan. Nigeria. Int. J. Health, Saf. Environ. 2018, 4, 257–268.
  • European Commission, Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No. 1488/94 on risk assessment for existing substances, part II, Brussels, Belgium. 2003.
  • Rodriguez-Mozaz, S.; Vaz-Moreira, I.; Varela Della Giustina, S.; Llorca, M.; Barceló, D.; Schubert, S.; Berendonk, T. U.; Michael-Kordatou, I.; Fatta-Kassinos, D.; Martinez, J. L.; et al. Antibiotic Residues in Final Effluents of European Wastewater Treatment Plants and Their Impact on the Aquatic Environment. Environ Int. 2020, 140, 105733. DOI: 10.1016/j.envint.2020.105733.
  • Pervaiz, M.; Riaz, A.; Munir, A.; Saeed, Z.; Hussain, S.; Rashid, A.; Younas, U.; Adnan, A. Synthesis and Characterization of Sulfonamide Metal Complexes as Antimicrobial Agents. J. Mol. Struct. 2020, 1202, 127284. DOI: 10.1016/j.molstruc.2019.127284.
  • Mansour, A. M. Molecular Structure and Spectroscopic Properties of Novel Manganese (II) Complex with Sulfamethazine Drug. J. Mol. Struct. 2013, 1035, 114–123. DOI: http://doi.org/10.1016/j.molstruc.2012.09.048.
  • Sekhon, B. S.; Randhawa, H. S.; Sahai, H. K. On the Coordinating Behaviour of Trimethoprim towards Some Metal Ions. Synth. React. Inorg. Met. Chem. 1999, 29, 309–321. DOI: 10.1080/00945719909349453.
  • Zhang, X. X.; Dong, L. L.; Cai, K.; Li, R. P. A Routine Method for Simultaneous Determination of Three Classes of Antibiotics in Aquaculture Water by SPE-RPLC-UV. AMR 2013, 726-731, 1253–1259. DOI: 10.4028/www.scientific.net/AMR.726-731.1253.
  • Herrera-Herrera, A. V.; Hernández-Borges, J.; Borges-Miquel, T. M.; Rodríguez-Delgado, M. Á. Dispersive Liquid–Liquid Microextraction Combined with Ultra-High Performance Liquid Chromatography for the Simultaneous Determination of 25 Sulfonamide and Quinolone Antibiotics in Water Samples. J. Pharm. Biomed. Anal. 2013, 75, 130–137. DOI: 10.1016/j.jpba.2012.11.026.
  • Wei, R.; Ge, F.; Huang, S.; Chen, M.; Wang, R. Occurrence of Veterinary Antibiotics in Animal Wastewater and Surface Water around Farms in Jiangsu Province, China. Chemosphere 2011, 82, 1408–1414. DOI: 10.1016/j.chemosphere.2010.11.067.
  • Ye, S.; Yao, Z.; Na, G.; Wang, J.; Ma, D. Rapid Simultaneous Determination of 14 Sulfonamides in Wastewater by Liquid Chromatography Tandem Mass Spectrometry. J. Sep. Sci. 2007, 30, 2360–2369. DOI: 10.1002/jssc.200600539.
  • Thomas, K. V.; Dye, C.; Schlabach, M.; Langford, K. H. Source to Sink Tracking of Selected Human Pharmaceuticals from Two Oslo City Hospitals and a Wastewater Treatment Works. J. Environ. Monit. 2007, 9, 1410–1418. DOI: 10.1039/b709745j.
  • Sim, W.-J.; Lee, J.-W.; Lee, E.-S.; Shin, S.-K.; Hwang, S.-R.; Oh, J.-E. Occurrence and Distribution of Pharmaceuticals in Wastewater from Households, Livestock Farms, Hospitals and Pharmaceutical Manufactures. Chemosphere 2011, 82, 179–186. DOI: 10.1016/j.chemosphere.2010.10.026.
  • Lien, L. T. Q.; Hoa, N. Q.; Chuc, N. T. K.; Thoa, N. T. M. L.; Phuc, H. D.; Diwan, V.; Dat, N. T.; Tamhankar, A.; Lundborg, C. S. Antibiotics in Wastewater of a Rural and an Urban Hospital before and after Wastewater Treatment, and the Relationship with Antibiotic Use: A One Year Study from Vietnam. IJERPH 2016, 13, 588. DOI: 10.3390/ijerph13060588.
  • Mayoudom, E. V. T.; Nguidjoe, E.; Mballa, R. N.; Tankoua, O. F.; Fokunang, C.; Anyakora, C.; Blackett, K. N. Identification and Quantification of 19 Pharmaceutical Active Compounds and Metabolites in Hospital Wastewater in Cameroon Using LC/QQQ and LC/Q-TOF. Environ. Monit. Assess 2018, 190, 723. DOI: 10.1007/s10661-018-7097-1.
  • Kleywegt, S.; Pileggi, V.; Lam, Y. M.; Elises, A.; Puddicomb, A.; Purba, G.; Di Caro, J.; Fletcher, T. The Contribution of Pharmaceutically Active Compounds from Healthcare Facilities to a Receiving Sewage Treatment Plant in Canada. Environ. Toxicol. Chem. 2016, 35, 850–862. DOI: 10.1002/etc.3124.
  • Vo, T. K. Q.; Bui, X. T.; Chen, S. S.; Nguyen, P. D.; Cao, N. D. T.; Vo, T. D. H.; Nguyen, T. T.; Nguyen, T. B. Hospital Wastewater Treatment by Sponge Membrane Bioreactor Coupled with Ozonation Process. Chemosphere 2019, 230, 377–383. DOI: 10.1016/j.chemosphere.2019.05.009.
  • Lindberg, R.; Jarnheimer, P. A.; Olsen, B.; Johansson, M.; Tysklind, M. Determination of Antibiotic Substances in Hospital Sewage Water Using Solid-Phase Extraction and Liquid Chromatography/Mass Spectrometry and Group Analogue Internal Standards. Chemosphere 2004, 57, 1479–1488. DOI: 10.1016/j.chemosphere.2004.09.015.
  • Cheng, J.; Jiang, L.; Sun, T.; Tang, Y.; Du, Z.; Lee, L.; Zhao, Q. Occurrence, Seasonal Variation and Risk Assessment of Antibiotics in the Surface Water of North China. Arch. Environ. Contam. Toxicol. 2019, 77, 88–97. DOI: 10.1007/s00244-019-00605-0.
  • Azanu, D.; Styrishave, B.; Darko, G.; Weisser, J. J.; Abaidoo, R. C. Occurrence and Risk Assessment of Antibiotics in Water and Lettuce in Ghana. Sci. Total Environ. 2018, 622-623, 293–305. DOI: 10.1016/j.scitotenv.2017.11.287.
  • Masoner, J. R.; Kolpin, D. W.; Furlong, E. T.; Cozzarelli, I. M.; Gray, J. L.; Schwab, E. A. Contaminants of Emerging Concern in Fresh Leachate from Landfills in the Conterminous United States. Environ. Sci.-Proc. Imp. 2014, 16, 2335–2354. DOI: 10.1039/C4EM00124A.
  • Lu, M.-C.; Chen, Y. Y.; Chiou, M.-R.; Chen, M. Y.; Fan, H.-J. Occurrence and Treatment Efficiency of Pharmaceuticals in Landfill Leachates. Waste Manag. 2016, 55, 257–264. DOI: 10.1016/j.wasman.2016.03.029.
  • Wu, D.; Huang, X. H.; Sun, J. Z.; Graham, D. W.; Xie, B. Antibiotic Resistance Genes and Associated Microbial Community Conditions in Aging Landfill Systems. Environ. Sci. Technol. 2017, 51, 12859–12867. DOI: 10.1021/acs.est.7b03797.
  • Wang, K.; Reguyal, F.; Zhuang, T. Risk Assessment and Investigation of Landfill Leachate as a Source of Emerging Organic Contaminants to the Surrounding Environment: A Case Study of the Largest Landfill in Jinan City, China. Environ. Sci. Pollut. Res. 2021, 28, 18368–18381. DOI: 10.1007/s11356-020-10093-8.
  • Yi, X. Z.; Tran, N. H.; Yin, T. R.; He, Y. L.; Gin, K. Y. H. Removal of Selected PPCPs, EDCs and Antibiotic Resistance Genes in Landfill Leachate by a Full-Scale Constructed Wetlands System. Water Res. 2017, 121, 46–60. DOI: 10.1016/j.watres.2017.05.008.
  • He, P.; Huang, J.; Yu, Z.; Xu, X.; Raga, R.; Lu, F. Antibiotic Resistance Contamination in Four Italian Municipal Solid Waste Landfills Sites Spanning 34 Years. Chemosphere 2021, 266, 129182. DOI: 10.1016/j.chemosphere.2020.129182.
  • Santos, L.; Gros, M.; Rodriguez-Mozaz, S.; Delerue-Matos, C.; Pena, A.; Barceló, D.; Montenegro, M. C. B. Contribution of Hospital Effluents to the Load of Pharmaceuticals in Urban Wastewaters: Identification of Ecologically Relevant Pharmaceuticals. Sci. Total Environ. 2013, 461–462, 302–316. DOI: http://doi.org/10.1016/j.scitotenv.2013.04.077.
  • De Liguoro, M.; Fioretto, B.; Poltronieri, C.; Gallina, G. The Toxicity of Sulfamethazine to Daphnia Magna and Its Additivity to Other Veterinary Sulfonamides and Trimethoprim. Chemosphere 2009, 75, 1519–1524. DOI: 10.1016/j.chemosphere.2009.02.002.
  • Eguchi, K.; Nagase, H.; Ozawa, M.; Endoh, Y. S.; Goto, K.; Hirata, K.; Miyamoto, K.; Yoshimura, H. Evaluation of Antimicrobial Agents for Veterinary Use in the Ecotoxicity Test Using Microalgae. Chemosphere 2004, 57, 1733–1738. DOI: 10.1016/j.chemosphere.2004.07.017.
  • Iatrou, E. I.; Stasinakis, A. S.; Thomaidis, N. S. Consumption-Based Approach for Predicting Environmental Risk in Greece Due to the Presence of Antimicrobials in Domestic Wastewater. Environ. Sci. Pollut. Res. 2014, 21, 12941–12950. DOI: 10.1007/s11356-014-3243-7.
  • Sanderson, H.; Johnson, D. J.; Wilson, C. J.; Brain, R. A.; Solomon, K. R. Probabilistic Hazard Assessment of Environmentally Occurring Pharmaceuticals Toxicity to Fish, Daphnids and Algae by ECOSAR Screening. Toxicol. Lett. 2003, 144, 383–395. doi:10.1016/S0378-4274(03)00257-1.
  • Yang, Y.; Owino, A. A.; Gao, Y.; Yan, X.; Xu, C.; Wang, J. Occurrence, Composition and Risk Assessment of Antibiotics in Soils from Kenya, Africa. Ecotoxicology 2016, 25, 1194–1201. doi:10.1007/s10646-016-1673-3.
  • Zhou, S.; Di Paolo, C.; Wu, X.; Shao, Y.; Seiler, T.-B.; Hollert, H. Optimization of Screening-Level Risk Assessment and Priority Selection of Emerging Pollutants—the Case of Pharmaceuticals in European Surface Waters. Environ. Int. 2019, 128, 1–10. doi:10.1016/j.envint.2019.04.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.