Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 9
1,198
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Potential uses of phosphogypsum: A review

ORCID Icon &
Pages 746-763 | Received 09 Jun 2022, Accepted 19 Jul 2022, Published online: 29 Jul 2022

References

  • IAEA. Radiation Protection and Management of NORM Residues in the Phosphate Industry. Safety Reports Series, No. 78, 2013. http://www.pub.iaea.org/MTCD/Publications/PDF/Pub1582_web.pdf
  • Mesić, M.; Brezinščak, L.; Zgorelec, Ž.; Perčin, A.; Šestak, I.; Bilandžija, D.; Trdenić, M.; Lisac, H. The Application of Phosphogypsum in Agriculture. Agric Conspectus Sci. 2016, 81, 7–13. DOI: https://hrcak.srce.hr/168426.
  • US EPA. National Emission Standards for Hazardous Air Pollutants—Subpart R. US EPA, Washington, DC, 2002.
  • Yang, J.; Liu, W.; Zhang, L.; Xiao, B. Preparation of Load-Bearing Building Materials from Autoclaved Phosphogypsum. Constr. Build. Mater. 2009, 23, 687–693. DOI: 10.1016/j.conbuildmat.2008.02.011.
  • Yang, L.; Zhang, Y.; Yan, Y. Utilization of Original Phosphogypsum as Raw Material for the Preparation of Self-Leveling Mortar. J. Cleaner Prod. 2016, 127, 204–213. DOI: 10.1016/j.jclepro.2016.04.054.
  • Silva, L. F. O.; Oliveira, M. L. S.; Crissien, T. J.; Santosh, M.; Bolivar, J.; Shao, L.; Dotto, G. L.; Gasparotto, J.; Schindler, M. A Review on the Environmental Impact of Phosphogypsum and Potential Health Impacts through the Release of Nanoparticles. Chemosphere 2022, 286, 131513. DOI: 10.1016/j.chemosphere.2021.131513.
  • Reijnders, L. Cleaner Phosphogypsum, Coal Combustion Ashes and Waste Incineration Ashes for Application in Building Materials: A Review. Build. Environ. 2007, 42, 1036–1042. DOI: 10.1016/j.buildenv.2005.09.016.
  • Kuryatnyk, T.; Da Luz, C. A.; Ambroise, J.; Pera, J. Valorization of Phosphogypsum as Hydraulic Binder. J. Hazard. Mater. 2008, 160, 681–687. 10.1016/j.jhazmat.2008.03.014.
  • Tayibi, H.; Choura, M.; López, F. A.; Alguacil, F. J.; López-Delgado, A. Environmental Impact and Management of Phosphogypsum. J. Environ. Manage. 2009, 90, 2377–2386. 10.1016/j.jenvman.2009.03.007.
  • Rashad, A. M. Phosphogypsum as a Construction Material. J. Cleaner Prod. 2017, 166, 732–743. DOI: 10.1016/j.jclepro.2017.08.049.
  • Silva, L. F. O.; Hower, J.; Izquierdo, M.; Querol, X. Complex Nanominerals and Ultrafine Particles Assemblages in Phosphogypsum of the Fertilizer Industry and Implications on Human Exposure. Sci. Total Environ. 2010, 408, 5117–5122. DOI: 10.1016/j.scitotenv.2010.07.023.
  • Silva, L. F. O.; Pinto, D.; Oliveira, M. L. S.; Dotto, G. L. Dispersion of Hazardous Nanoparticles on Beaches around Phosphogypsum Factories. Mar. Pollut. Bull. 2021, 169, 112493. DOI: 10.1016/j.marpolbul.2021.112493.
  • Lütke, S. F.; Oliveira, M. L. S.; Silva, L. F. O.; Cadaval, T. R. S.; Dotto, G. L. Nanominerals Assemblages and Hazardous Elements Assessment in Phosphogypsum from an Abandoned Phosphate Fertilizer Industry. Chemosphere 2020, 256, 127138. DOI: 10.1016/j.chemosphere.2020.127138.
  • Rutherford, P.; Dudas, M.; Samek, R. Environmental Impacts of Phosphogypsum. Sci. Total Environ. 1994, 149, 1–38. DOI: http://doi.org/10.1016/0048-9697(94)90002-7.
  • Hund, L.; Bedrick, E. J.; Miller, C.; Huerta, G.; Nez, T.; Ramone, S.; Shuey, C.; Cajero, M.; Lewis, J. A Bayesian Framework for Estimating Disease Risk Due to Exposure to Uranium Mine and Mill Waste on the Navajo Nation. J. R. Stat. Soc. A 2015, 178, 1069–1091. DOI: https://rss.onlinelibrary.wiley.com/doi/epdf/101111/rssa.12099.
  • EU Council Directive. 2013/59/EURATOM, Official Journal of the European Union L 13/1, 17.1.2014.
  • Kacimi, L.; Simon-Masseron, A.; Ghomari, A.; Derriche, Z. Reduction of Clinkerization Temperature by Using Phosphogypsum. J. Hazard. Mater. 2006, 137, 129–137. 10.1016/j.jhazmat.2005.12.053.
  • Shen, W.; Zhou, M.; Zhao, Q. Study on Lime–Fly Ash–Phosphogypsum Binder. Constr. Build. Mater. 2007, 21, 1480–1485. DOI: 10.1016/j.conbuildmat.2006.07.010.
  • Taher, M. A. Influence of Thermally Treated Phosphogypsum on the Properties of Portland Slag Cement. Resour. Conserv. Recycl. 2007, 52, 28–38. DOI: 10.1016/j.resconrec.2007.01.008.
  • Manjit, S.; Mridul, G. Study on Anhydrite Plaster from Waste Phosphogypsum for Use in Polymerised Flooring Composition. Constr. Build. Mater. 2005, 19, 25–29. DOI: 10.1016/j.conbuildmat.2004.04.038.
  • Sebbahi, T. S.; Ould-Chameikh, M. L.; Sahban, F.; Aride, J.; Benarafa, L.; Belkbir, L. Thermal Behaviour of Moroccan Phosphogypsum. Thermochim. Acta 1997, 302, 69–75. DOI: 10.1016/S0040-6031(97)00159-7.
  • Rouis, M. J.; Bensalah, A. Phosphogypsum Management in Tunisia: Environmental Problems and Required Solutions. In Proceedings of the Third International Symposium on Phosphogypsum, Orlando, FL, FIPR Pub. No. 01-060-083;1, 1990, pp 87–105.
  • Choura, M. Short and Medium Action Program III-Tunisia: Environmental Evaluation of the Treatment of Phosphate in the South Coastal Zone of Sfax. Municipally of Sfax, Internal report, Tunisia, 2007.
  • Degirmenci, N.; Okucu, A.; Turabi, A. Application of Phosphogypsum in Soil Stabilization. Build. Environ. 2007, 42, 3393–3398. DOI: 10.1016/j.buildenv.2006.08.010.
  • Taha, R.; Seals, R. K. Engineering Properties and Potential Uses of by Product Phosphogypsum. In Proceedings of Utilization of Waste Materials in Civil Engineering Construction. American Society of Civil Engineering, New York, NY, 1992.
  • Burnett, W. C.; Elzerman, A. W. Nuclide Migration and the Environmental Radiochemistry of Florida Phosphogypsum. J. Environ. Radioact. 2001, 54, 27–51. DOI: http://doi.org/10.1016/S0265-931X(00)00164-8.
  • Chernysh, Y.; Yakhnenko, O.; Chubur, V.; Roubík, H. Phosphogypsum Recycling: A Review of Environmental Issues, Current Trends, and Prospects. Appl. Sci. 2021, 11, 1575. DOI: 10.3390/app11041575.
  • Turner, L. E.; Dhar, A.; Naeth, M. A.; Chanasyk, D. S.; Nichol, C. K. Effect of Soil Capping Depth on Phosphogypsum Stack Revegetation. Environ. Sci. Pollut. Res. 2022, 29, 50166–50176. DOI: 10.1007/s11356-022-19420-7.
  • Mas, J. L.; San Miguel, E. G.; Bolívar, J. P.; Vaca, F.; Pérez-Moreno, J. P. An Assay on the Effect of Preliminary Restoration Tasks Applied to a Large TENORM Wastes Disposal in the South-West of Spain. Sci. Total Environ. 2006, 364, 55–66. 10.1016/j.scitotenv.2005.11.006.
  • Lysandrou, M.; Charalambides, A.; Pashalidis, I. Radon Emanation from Phosphogypsum and Related Mineral Samples in Cyprus. Radiat. Meas. 2007, 42, 1583–1585. DOI: 10.1016/j.radmeas.2007.04.006.
  • Torres-Sanchez, R.; Sanchez-Rodas, D.; Sanchez de la Campa, A. M.; de la Rosa, J. D. Hydrogen Fluoride Concentrations in Ambient Air of an Urban Area Based on the Emissions of a Major Phosphogypsum Deposit (SW, Europe). Sci. Total Environ. 2020, 714, 136891. 10.1016/j.scitotenv.2020.136891.
  • Oliveira, M. L.; Ward, C. R.; Izquierdo, M.; Sampaio, C. H.; de Brum, I. A.; Kautzmann, R. M.; Sabedot, S.; Querol, X.; Silva, L. F. Chemical Composition and Minerals in Pyrite Ash of an Abandoned Sulphuric Acid Production Plant. Sci. Total Environ. 2012, 430, 34–47. 10.1016/j.scitotenv.2012.04.046.
  • Li, X. T.; Zeng, G. P.; Wang, S. M.; Deng, D. Investigation and Evaluation of the Radioactivity Level of Phosphogypsum in the Main Phosphate Ore Areas of Guizhou Province. Environ. Sci. Technol. 2020, 26, 44–47.
  • Zha, X. F.; Qin, Y. J.; Wu, P.; Han, Z. W.; Li, X. X.; Ye, H. J.; Li, L. Geochemical Processes of Karst Groundwater under the Influence of Seepage from Phosphogypsum Storage Sites. Chinese J. Ecol. 2018, 37, 1708–1715.
  • Wang, P.; Liu, J.; Zhu, J.; Li, Z. J.; Tian, M. Y.; Zhang, W. Effects of Heavy Metal Migration on Cultivated Land Quality and Pollution Risk Control in Phosphor and Gypso Storage Site in Karst Mountain Area. Bull. Soil Water Conserv. 2019, 39, 294–299.
  • Ben Amor, R.; Gueddari, M. Major Ion Geochemistry of Ghannouch–Gabes Coastline (at Southeast Tunisia, Mediterranean Sea): Study of the Impact of Phosphogypsum Discharges by Geochemical Modeling and Statistical Analysis. Environ. Earth Sci. 2016, 75, 1-10. DOI: 10.1007/s12665-016-5666-6.
  • Rabaoui, L.; Balti, R.; Zrelli, R.; Tlig-Zouari, S. Assessment of Heavy Metal Pollution in the Gulf of Gabes (Tunisia) Using Four Mollusc Species. Medit. Mar. Sci. 2013, 15, 45–58. DOI: 10.12681/mms.504.
  • Agoubi, B.; Gzam, M. Adverse Effects of Phosphate Industry on the Environment and Groundwater Geochemistry in the Ghannouch Field, Southeastern Tunisia. Am. J. Geophys. Geochem. Geosyst. 2016, 2, 51–63.
  • Melki, S.; Gueddari, M. Impact Assessment of Phosphogypsum Leachate on Groundwater of Sfax-Agareb (Southeast of Tunisia): Using Geochemical and Isotopic Investigation. Hindawi J. Chem. 2018, 2018, 1–10. DOI: 10.1155/2018/2721752.
  • Macías, F.; Pérez-López, R.; Cánovas, C. R.; Carrero, S.; Cruz-Hernandez, P. Environmental Assessment and Management of Phosphogypsum according to European and United States of America Regulations. Procedia Earth Planet. Sci. 2017, 17, 666–669. DOI: 10.1016/j.proeps.2016.12.178.
  • Pérez-López, R.; Álvarez-Valero, A. M.; Nieto, J. M. Changes in Mobility of Toxic Elements during the Production of Phosphoric Acid in the Fertilizer Industry of Huelva (SW Spain) and Environmental Impact of Phosphogypsum Wastes. J. Hazard. Mater. 2007, 148, 745–750. 10.1016/j.jhazmat.2007.06.068.
  • Pérez-Moreno, S.; Gázquez, M.; Pérez-López, R.; Vioque, I.; Bolívar, J. J. C. Assessment of Natural Radionuclides Mobility in a Phosphogypsum Disposal Area. Chemosphere 2018, 211, 775–783. DOI: 10.1016/j.chemosphere.2018.07.193.
  • Torres-Sánchez, R.; Sánchez-Rodas, D.; Sanchez de la Campa, A. M.; Kandler, K.; Schneiders, K.; de la Rosa, J. D. Geochemistry and Source Contribution of Fugitive Phosphogypsum Particles in Huelva, (SW Spain). Atmos. Res. 2019, 230, 104650. DOI: 10.1016/j.atmosres.2019.104650.
  • Bolivar, J. P.; Garcia-Tenorio, R.; Vaca, F. Radioecological Study of an Estuarine System Located in the South of Spain. Water Res. 2000, 34, 2941–2950. DOI: 10.1016/S0043-1354(99)00370-X.
  • Barros de Oliveira, S. M.; Cardoso da Silva, P. S.; Paci Mazzilli, B.; Teixeira Favaro, D. I.; Saueia, C. H. Rare Earth Elements as Tracers of Sediment Contamination by Phosphogypsum in the Santos Estuary, Southern Brazil. Appl. Geochem. 2007, 22, 837–850. DOI: 10.1016/j.apgeochem.2006.12.017.
  • Haridasan, P. P.; Maniyan, C. G.; Pillai, P. M. B.; Khan, A. H. Dissolution Characteristics of 226Ra from Phosphogypsum. J. Environ. Radioact. 2002, 62, 287–294. DOI: 10.1016/S0265-931X(02)00011-5.
  • Neves, M.; Abreu, M.; Figueiredo, V. J. E. Uranium in Vegetable Foodstuffs: Should Residents Near the Cunha Baixa Uranium Mine Site (Central Northern Portugal) Be Concerned? Environ. Geochem. Health 2012, 34, 181–189. DOI: https://link.springer.com/article/101007/s10653-011-9428-9.
  • Al-Hwaiti, M.; Al-Khashman, O. Health Risk Assessment of Heavy Metals Contamination in Tomato and Green Pepper Plants Grown in Soils Amended with Phosphogypsum Waste Materials. Environ. Geochem. Health 2015, 37, 287–304. DOI: 10.1007/s10653-014-9646-z.
  • Akinyemi, S. A.; Gitari, W. M.; Petrik, L. F.; Nyakuma, B. B.; Hower, J. C.; Ward, C. R.; Oliveira, M. L. S.; Silva, L. F. O. Environmental Evaluation and Nano-Mineralogical Study of Fresh and Unsaturated Weathered Coal Fly Ashes. Sci. Total Environ. 2019, 663, 177–188. DOI: 10.1016/j.scitotenv.2019.01.308.
  • Duarte, A. L.; DaBoit, K.; Oliveira, M. L. S.; Teixeira, E. C.; Schneider, I. L.; Silva, L. F. O. Hazardous Elements and Amorphous Nanoparticles in Historical Estuary Coal Mining Area. Geosci. Front. 2019, 10, 927–939. DOI: 10.1016/j.gsf.2018.05.005.
  • Gasparotto, J.; Chaves, P. R.; da Boit Martinello, K.; Oliveira, L. F. S.; Gelain, D. P.; Moreira, J. C. F. Obesity Associated with Coal Ash Inhalation Triggers Systemic Inflammation and Oxidative Damage in the Hippocampus of Rats. Food Chem. Toxicol. 2019, 133, 110766. DOI: 10.1016/j.fct.2019.110766.
  • Gredilla, A.; Fdez-Ortiz de Vallejuelo, S.; Rodriguez-Iruretagoiena, A.; Gomez, L.; Oliveira, M. L. S.; Arana, G.; De Diego, A.; Madariaga, J. M.; Silva, L. F. O. Evidence of Mercury Sequestration by Carbon Nanotubes and Nanominerals Present in Agricultural Soils from a Coal Fired Power Plant Exhaust. J. Hazard. Mater. 2019, 378, 120747. DOI: 10.1016/j.jhazmat.2019.120747.
  • Nordin, A. P.; Da Silva, J.; De Souza, C.; Niekraszewicz, L. A. B.; Dias, J. F.; Da Boit, K.; Oliveira, M. L. S.; Grivicich, I.; Garcia, A. L.; Silva, L. F.; Da Silva, F. R. In Vitro Genotoxic Effect of Secondary Minerals Crystallized in Rocks from Coal Mine Drainage. J. Hazard. Mater. 2018, 346, 263–272. DOI: 10.1016/j.jhazmat.2017.12.026.
  • León-Mejía, G.; Machado, M. N.; Okuro, R. T.; Silva, L. F.; Telles, C.; Dias, J.; Niekraszewicz, L.; Da Silva, J.; Henriques, J. A. P.; Zin, W. A. Intratracheal Instillation of Coal and Coal Fly Ash Particles in Mice Induces Dna Damage and Translocation of Metals to Extrapulmonary Tissues. Sci. Total Environ. 2018, 625, 589–599. DOI: 10.1016/j.scitotenv.2017.12.283.
  • Oliveira, M. L.; Da Boit, K.; Schneider, I.; Teixeira, E.; Crissien, T.; Silva, L. F. Study of Coal Cleaning Rejects by FIB and Sample Preparation for HR-TEM: Mineral Surface Chemistry and Nanoparticle-Aggregation Control for Health Studies. J. Cleaner Prod. 2018, 188, 662–669. DOI: 10.1016/j.jclepro.2018.04.050.
  • Sánchez-Peña, N. E.; Narváez-Semanate, J. L.; Pabón-Patiño, D.; Fernández-Mera, J. E.; Oliveira, M. L.; Da Boit, K.; Tutikian, B.; Crissien, T.; Pinto, D.; Serrano, I.; et al. Chemical and Nano-Mineralogical Study for Determining Potential Uses of Legal Colombian Gold Mine Sludge: Experimental Evidence. Chemosphere 2018, 191, 1048–1055. DOI: 10.1016/j.chemosphere.2017.08.127.
  • Gasparotto, J.; Chaves, P. R.; da Boit Martinello, K.; da Rosa-Siva, H. T.; Bortolin, R.; Silva, L. F.; Rabelo, T.; Da Silva, J.; Da Silva, F.; Nordin, A.; et al. Obese Rats Are More Vulnerable to Inflammation, Genotoxicity and Oxidative Stress Induced by Coal Dust Inhalation than Non-Obese Rats. Ecotoxicol. Environ. Saf. 2018, 165, 44–51. DOI: 10.1016/j.ecoenv.2018.08.097.
  • Oliveira, M.; Izquierdo, M.; Querol, X.; Lieberman, R. N.; Saikia, B. K.; Silva, L. F. O. Nanoparticles from Construction Wastes: A Problem to Health and the Environment. J. Cleaner Prod. 2019, 219, 236–243. DOI: 10.1016/j.jclepro.2019.02.096.
  • Oliveira, M. L.; Saikia, B. K.; da Boit, K.; Pinto, D.; Tutikian, B. F.; Silva, L. F. River Dynamics and Nanopaticles Formation: A Comprehensive Study on the Nanoparticle Geochemistry of Suspended Sediments in the Magdalena River, Caribbean Industrial Area. J. Cleaner Prod. 2019, 213, 819–824. DOI: 10.1016/j.jclepro.2018.12.230.
  • Silva, L. F.; Santosh, M.; Schindler, M.; Gasparotto, J.; Dotto, G. L.; Oliveira, M. L.; Hochella, M. F., Jr. Nanoparticles in Fossil and Mineral Fuel Sectors and Their Impact on Environment and Human Health: A Review and Perspective. Gondwana Res. 2021, 92, 184–201. DOI: 10.1016/j.gr.2020.12.026.
  • Saikia, M.; Das, T.; Dihingia, N.; Fan, X.; Silva, L. F.; Saikia, B. K. Formation of Carbon Quantum Dots and Graphene Nanosheets from Different Abundant Carbonaceous Materials. Diamond Relat. Mater. 2020, 106, 107813. DOI: 10.1016/j.diamond.2020.107813.
  • SEPA. Environmental Quality Standard for Surface Water (GB3838-2002). State Environmental Protection Administration of China, Beijing of Regula, 2002.
  • Manjit, S.; Mridul, G. Making of Anhydrite Cement from Waste Gypsum. Cem. Concr. Res. 2000, 30, 571–577. DOI: https://www.academia.edu/26980140/Making_of_anhydrite_cement_from_waste_gypsum.
  • Smadi, M.; Haddad, R.; Akour, A. Potential Use of Phosphogypsum in Concrete. Cem. Concr. Res. 1999, 29, 1419–1425. DOI: 10.1016/S0008-8846(99)00107-6.
  • Altun, A.; Sert, Y. Utilization of Weathered Phosphogypsum as Set Retarder in Portland Cement. Cem. Concr. Res. 2004, 34, 677–680. DOI: 10.1016/j.cemconres.2003.10.017.
  • Fornés, I. V.; Vaičiukynienė, D.; Nizevičienė, D.; Doroševas, V. The Improvement of the Water-Resistance of the Phosphogypsum by Adding Waste Metallurgical Sludge. J. Build. Eng. 2021, 43, 102861. DOI: 10.1016/j.jobe.2021.102861.
  • Zaghloul, Y. R. Investigation on Utilization of Phosphogypsum as a Partial Replacement of Cement in Concrete. Int. J. Eng. Res. Technol. 2019, 8, 1–5.
  • Han, G.; Zhang, J.; Sun, H.; Shen, D.; Wu, Z.; An, X.; Meye, S. M.; Huang, Y. Application of Iron Ore Tailings and Phosphogypsum to Create Artificial Rockfills Used in Rock-Filled Concrete. Buildings 2022, 12, 555. DOI: 10.3390/buildings12050555.
  • Fornés, I. V.; Vaičiukynienė, D.; Nizevičienė, D.; Doroševas, V.; Michalik, B. A Comparative Assessment of the Suitability of Phosphogypsum from Different Origins to be Utilised as the Binding Material of Construction Products. J. Build. Eng. 2021, 44, 102995. DOI: 10.1016/j.jobe.2021.102995.
  • Raut, S. P.; Patil, U. S.; Madurwar, M. V. Utilization of Phosphogypsum and Rice Husk to Develop Sustainable Bricks. Mater. Today: Proc. 2022, 60, 595–601. DOI: 10.1016/j.matpr.2022.02.122.
  • Paschoalin Filho, J. A.; Chaves, H. C.; Ghermandi, A.; Guerner Dias, A. J.; Carvalho, D.; Ribeiro, J. The Use of Phosphogypsum for Soil Bricks Manufacturing as an Alternative for Its Sustainable Destination. Res. Square 2022. DOI: 10.21203/rs.3.rs-1526759/v1.
  • Bouchhima, L.; Rouis, M.; Choura, M. A Study of Phosphogypsum—Crushing Sand Based Bricks. Int. J. Civil Struct. Environ. Infrastruct. Eng. Res. Dev. 2013, 3, 11–20. https://www.academia.edu/32665904/A_Study_of_Phosphogypsum_Crushing_Sand_Based_Bricks
  • Ajam, L.; Ben Ouezdou, M.; Felfoul, S. H.; El Mensi, R. Characterization of the Tunisian Phosphogypsum and Its Valorization in Clay Bricks. Constr. Build. Mater. 2009, 23, 3240–3247. DOI: http://doi.org/10.1016/j.conbuildmat.2009.05.009.
  • Kumar, S. Fly Ash–Lime–Phosphogypsum Hollow Blocks for Walls and Partitions. Build. Environ. 2003, 38, 291–295. DOI: 10.1016/S0360-1323(02)00068-9.
  • Degirmenci, Ν. Utilization of Phosphogypsum as Raw and Calcined Material in Manufacturing of Building Products. Constr. Build. Mater. 2008a, 22, 1857–1862. DOI: 10.1016/j.conbuildmat.2007.04.024.
  • Garg, M.; Singh, M.; Kumar, R. Some Aspects of the Durability of a Phosphogypsum-Lime-Fly Ash Binder. Constr. Build. Mater. 1996, 10, 273–279. DOI: https://www.academia.edu/8231079/Some_aspects_of_the_durability_of_a_phosphogypsum-lime-fly_ash_binder..
  • Zhou, J.; Gao, K.; Shu, Z.; Wang, Y.; Yan, C. Utilization of Waste Phosphogypsum to Prepare Non-Fired Bricks by a Novel Hydration–Recrystallization Process. Constr. Build. Mater. 2012, 34, 114–119. DOI: 10.1016/j.conbuildmat.2012.02.045.
  • Bhadauria, S.; Thakar, R. Utilization of Phosphogypsum in Cement Mortar and Concrete. 31st Conference on Our World in Concrete & Structures, Singapore, 2006.
  • Zhou, J.; Li, X.; Zhao, Y.; Shu, Z.; Wang, Y.; Zhang, Y.; Shen, X. Preparation of Paper-Free and Fiber-Free Plasterboard with High Strength Using Phosphogypsum. Constr. Build. Mater. 2020, 243, 118091. DOI: 10.1016/j.conbuildmat.2020.118091.
  • Degirmenci, Ν. The Using of Waste Phosphogypsum and Natural Gypsum in Adobe Stabilization. Constr. Build. Mater. 2008b, 22, 1220–1224. DOI: 10.1016/j.conbuildmat.2007.01.027.
  • Ding, C.; Sun, T.; Shui, Z.; Xie, Y.; Ye, Z. Physical Properties, Strength, and Impurities Stability of Phosphogypsum-Based Cold-Bonded Aggregates. Constr. Build. Mater. 2022, 331, 127307. DOI: 10.1016/j.conbuildmat.2022.127307.
  • Zheng, T.; Lu, Y.; Luo, S.; Kong, D.; Fu, R. Effect of the Phosphogypsum Calcination Time on the Compressive Mechanical Properties of Phosphogypsum-Based Composite Cementitious Materials. Mater. Res. Express 2022, 9, 035506. DOI: 10.1088/2053-1591/ac5ef6.
  • Guo, T.; Malone, R. F.; Rusch, K. Stabilized Phosphogypsum: Class C Fly Ash: Portland II Cement Composites for Potential Marine Applications. Environ. Sci. Technol. 2001, 35, 3967–3973. https://pubs.acs.org/doi/pdf/101021/es010520%2B.
  • Zheng, T.; Miao, X.; Kong, D.; Wang, L.; Cheng, L.; Yu, K. Proportion and Performance Optimization of Lightweight Foamed Phosphogypsum Material Based on an Orthogonal Experiment. Buildings 2022, 12, 207. DOI: 10.3390/buildings12020207.
  • Paige-Green, P.; Gerber, S. An Evaluation of the Use of By-Product Phosphogypsum as a Pavement Material for Roads. South African Transport Conference, ‘Action in Transport for the New Millennium’, Conference Papers, 2000. https://repository.up.ac.za/bitstream/handle/2263/8295/73%20PaigeGreen.pdf?sequence=1.
  • Folek, S.; Walawska, B.; Wilczek, B.; Miśkiewicz, J. Use of Phosphogypsum in Road Construction. Polish J. Chem. Technol. 2011, 13, 18–22. DOI: 10.2478/v10026-011-0018-5.
  • Cuadri, A.; Navarro, F.; García-Morales, M.; Partal, P. New Foamed/Modified Bitumen Using Phosphogypsum Waste. E&E Congress 2016, 6th Eurasphalt & Eurobitume Congress, Prague, Czech Republic, 2016. https://www.h-a-d.hr/pubfile.php?id=895. DOI: 10.14311/EE.2016.018.
  • Krishnan, D.; Janani, V.; Ravichandran, P.; Annadurai, R.; Gunturi, M. Effect of Fly Ash and Phosphogypsum on Properties of Expansive Soils. Int. J. Sci. Eng. Technol. 2014, 3, 592–596. DOI: https://www.academia.edu/6943848/Effects_of_Fly_Ash_and_PhosphoGypsum_on_Properties_of_Expansive_Soils.
  • de Rezende, L. R.; Curado, T. D. S.; Silva, M. V.; Mascarenha, M.; Metogo, D. A. N.; Neto, M. P. C.; Bernucci, L. L. B. Laboratory Study of Phosphogypsum, Stabilizers, and Tropical Soil Mixtures. J. Mater. Civ. Eng. 2017, 29(1), 04016188. DOI: http://doi.org/10.1061/(ASCE)MT.1943-5533.0001711.
  • Li, B.; Wei, S.; Zhen, Y. An Effective Recycling Direction of Water-Based Drilling Cuttings and Phosphogypsum Co-Processing in Road Cushion Layer. Environ. Sci. Pollut. Res. Int. 2020, 27, 17420–17424. 10.1007/s11356-020-08406-y.
  • Diouri, C.; Echehbani, I.; Lahlou, K.; Omari, K.; Alaoui, A. Valorization of Moroccan Phosphogypsum in Road Engineering: Parametric Study. Mater. Today: Proc. 2022, 58, 1054–1058. DOI: 10.1016/j.matpr.2022.01.084.
  • Rakhila, Y.; Mestari, A.; Azmi, S.; Elmchaouri, A. Elaboration and Characterization of New Ceramic Material from Clay and Phosphogypsum. RJC 2018, 11, 1552–1563. DOI: http://doi.org/10.31788/RJC.2018.1144025.
  • Contreras, M.; Teixeira, S.; Santos, G.; Gázquez, M.; Romero, M.; Bolívar, J. Influence of the Addition of Phosphogypsum on Some Properties of Ceramic Tiles. Constr. Build. Mater. 2018, 175, 588–600. DOI: 10.1016/j.conbuildmat.2018.04.131.
  • Ghazel, N.; Saadaoui, E.; Ben Romdhane, C.; Chakir, N. H.; Abbes, N.; Grira, M.; Abdelkabir, S.; Aydi, S.; Abdallah, L.; Mars, M. Assessment of Phosphogypsum Use in a Nursery for Plant Propagation. Int. J. Environ. Stud. 2018, 75, 284–293. DOI: 10.1080/00207233.2017.1356631.
  • Komnitsas, K.; Lazar, I.; Petrisor, I. G. Application of a Vegetative Cover on Phosphogypsum Stacks. Min. Eng. 1999, 12, 175–185. DOI: 10.1016/S0892-6875(98)00130-7.
  • Mesić, M. Korekcija Suvišne Kiselosti Tla Različitim Vapnenim Materijalima. Correction of Excessive Soil Acidity with Different Liming Materials. Agric. Conspectus Sci. 2001, 66, 75–93. https://hrcak.srce.hr/file/19140.
  • Spiak, Z.; Gediga, K. Usefulness of Selected Mineral Wastes for Reclamation of Copper Industry Dumping site. Environ. Protect. Eng. 2009, 35, 80–87. https://www.researchgate.net/publication/235671525_Usefulness_of_selected_mineral_wastes_for_reclamation_of_copper_industry_dumping_site.
  • Abdel-Fattah, M. K.; EL-Naka, E. S. Empirical Approach of Leaching Curves for Determining the Efficiency of Reclaiming Saline-Sodic Soils in Sahl El-Tina, Sinai, Egypt. IJPSS 2015, 8, 1–15. DOI: http://www.journalrepository.org/media/journals/IJPSS_24/2015/Aug/Fattah832015IJPSS18606.pdf.
  • Alva, A. K.; Sumner, M. E.; Miller, W. P. Reactions of Gypsum or Phosphogypsum in Highly Weathered Acid Subsoils. Soil Sci. Soc. Am. J. 1990, 54, 993–998. DOI: 10.2136/sssaj1990.03615995005400040010x.
  • Vyshpolsky, F.; Mukhamedjanov, K.; Bekbaev, U.; Ibatullin, S.; Yuldashev, T.; Noble, A. D.; Mirzabaev, A.; Aw-Hassan, A.; Qadir, M. Optimizing the Rate and Timing of Phosphogypsum Application to Magnesium-Affected Soils for Crop Yield and Water Productivity Enhancement. Agric. Water Manage. 2010, 97, 1277–1286. DOI: 10.1016/j.agwat.2010.02.020.
  • James, J.; Pandian, P. K. Plasticity, Swell-Shrink, and Microstructure of Phosphogypsum Admixed Lime Stabilized Expansive Soil. Adv. Civil Eng. 2016, 2016, 1–10. DOI: 10.1155/2016/9798456.
  • Gennari, R. F.; Garcia, I.; Medina, N. H.; Silveira, M. G. 2011 Phosphogypsum Analysis: Total Content and Extractable Element Concentrations. Presented at the International Nuclear Atlantic Conference − INAC 2011, Belo Horizonte, MG, Brazil. https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/056/43056392.pdf.
  • Zhantasov, K.; Ziyat, A.; Sarypbekova, N.; Kirgizbayeva, K.; Iztleuov, G.; Zhantasov, M.; Sagitova, G.; Aryn, A. Ecologically Friendly, Slow-Release Granular Fertilizers with Phosphogypsum. Pol. J. Environ. Stud. 2022, 31, 2935–2938. DOI: 10.15244/pjoes/144099.
  • Muhanbet, A.; Khusainov, A.; Elubaev, S. Environmental Safety for Chernozem Soil Fertilized with Phosphogypsum and Ash for Spring Wheat Cultivation in North Kazakhstan. MATEC Web Conf. 2016, 73, 03010. DOI: 10.1051/matecconf/20167303010.
  • Crusciol, C.; Artigiani, A.; Arf, O.; Carmeis Filho, A.; Soratto, R.; Nascente, N.; Alvarez, R. Soil Fertility, Plant Nutrition, and Grain Yield of Upland Rice Affected by Surface Application of Lime, Silicate, and Phosphogypsum in a Tropical no-till System. Catena 2016, 137, 87–99. DOI: http://doi.org/10.1016/j.catena.2015.09.009.
  • Liu, M.; Liang, Z.; Ma, H.; Huang, L.; Wang, M. Responses of Rice (Oryza sativa L.) Growth and Yield to Phosphogypsum Amendment in Saline-Sodic Soils of North-East China. J. Food Agric. Environ. 2010, 8, 827–833.
  • Li, J.; Wu, H. S.; Gao, Z. Q.; Shang, X. X.; Zheng, P. H.; Yin, J.; Kakpa, D.; Ren, Q. Q.; Faustin, O. K.; Chen, S. Y.; et al. Impact of Phosphogypsum Wastes on the Wheat Growth and co2 Emissions and Evaluation of Economic-Environmental Benefit. Huan Jing Ke Xue 2015, 36, 3099–3105.
  • Prochnow, L.; Caires, E.; Rodrigues, E. C. Phosphogypsum Use to Improve Subsoil Acidity: The Brazilian Experience. Better Crops 2016, 100, 13–15. DOI: http://www.ipni.net/publication/bettercrops.nsf/0/BD6F609D14C8394C85257FB5006E2655/$FILE/BC-2016-2%20p13.pdf.
  • Lei, L.; Gu, J.; Wang, X.; Song, Z.; Wang, J.; Yu, J.; Hu, T.; Dai, X.; XiE, J.; Zhao, W. Microbial Succession and Molecular Ecological Networks Response to the Addition of Superphosphate and Phosphogypsum during Swine Manure Composting. J. Environ. Manage 2021, 279, 111560. 10.1016/j.jenvman.2020.111560.
  • Mattila, H. P.; Zevenhoven, R. Mineral Carbonation of Phosphogypsum Waste for Production of Useful Carbonate and Sulfate Salts. Front. Energy Res. 2015, 3, 48. DOI: 10.3389/fenrg.2015.00048.
  • Zevenhoven, R.; Morales-Floréz, V.; Santos, A. J.; Esquivias, L. Transforming Phosphogypsum Waste into Products with Market Value. In Progress towards the Resource Revolution; Ludwig, C., Valdivia, S., Eds.; World Resources Forum, 2019, pp 157–164. http://urn.fi/URN:NBN:fi-fe2020102788521.
  • Mulopo, J.; Ikhu-Omoregbe, D. Phosphogypsum Conversion to Calcium Carbonate and Utilization for Remediation of Acid Mine Drainage. J. Chem. Eng. Process Technol. 2012, 3(129), 2-6. DOI: 10.4172/2157-7048.1000129.
  • Ennaciri, Y.; Mouahid, F. E.; Bendriss, A.; Bettach, M. Conversion of Phosphogypsum to Potassium Sulfate and Calcium Carbonate in Aqueous Solution. MATEC Web Conf. 2013, 5, 04006. DOI: 10.1051/matecconf/20130504006.
  • Hammas, I.; Horchani-Naifer, K.; Férid, M. Solubility Study and Valorization of Phosphogypsum Salt Solution. Int. J. Miner. Process. 2013, 123, 87–93. DOI: 10.1016/j.minpro.2013.05.008.
  • Douahem, H.; Hammi, H.; Hamzaoui, A. H.; M’nif, A. Modeling and Optimization of Phosphogypsum Transformation into Calcium "Uoride Using Experimental Design Methodology”. J. Tunisian Chem. Soc. 2016, 18, 106–113. http://www.sctunisie.org/pdf/JSCT_v18-15.pdf.
  • Vaičiukynienė, D.; Nizevičienė, D.; Kielė, A.; Janavičius, E.; Pupeikis, D. Effect of Phosphogypsum on the Stability upon Firing Treatment of Alkali-Activated Slag. Constr. Build. Mater. 2018, 184, 485–491. DOI: 10.1016/j.conbuildmat.2018.06.213.
  • Vaičiukynienė, D.; Tamošaitis, G.; Kantautas, A.; Nizevičienė, D.; Pupeikis, D. Porous Alkali-Activated Materials Based on Municipal Solid Waste Incineration Ash with Addition of Phosphogypsum Powder. Constr. Build. Mater. 2021, 301, 123962. DOI: 10.1016/j.conbuildmat.2021.123962.
  • Jiang, G.; Wu, A.; Wang, Y.; Wang, Y.; Li, J. Determination of Utilization Strategies for Hemihydrate Phosphogypsum in Cemented Paste Backfill: Used as Cementitious Material or Aggregate. J. Environ. Manage. 2022, 308, 114687. 10.1016/j.jenvman.2022.114687.
  • Gaidajis, G.; Anagnostopoulos, A.; Garidi, A.; Mylona, E.; Zevgolis, I. E. Laboratory Evaluation of Phosphogypsum for Alternative Uses. Environ. Geotech. 2018, 5, 310–323. DOI: 10.1680/jenge.16.00040.
  • Anagnostopoulos, A.; Navarro, M.; Ahmad, A.; Ding, Y.; Gaidajis, G. Valorization of Phosphogypsum as a Thermal Energy Storage Material for Low Temperature Applications. J. Cleaner Prod. 2022, 342, 130839. DOI: 10.1016/j.jclepro.2022.130839.
  • Xiao, J.; Lu, T.; Zhuang, Y.; Jin, H. A Novel Process to Recover Gypsum from Phosphogypsum. Materials 2022, 15, 1944. DOI: 10.3390/ma15051944.
  • Mukaba, J. L.; Eze, C. P.; Pereao, O.; Petrik, L. F. Rare Earths’ Recovery from Phosphogypsum: An Overview on Direct and Indirect Leaching Techniques. Minerals 2021, 11, 1051. DOI: 10.3390/min11101051.
  • Cánovas, C. R.; Chapron, S.; Arrachart, G.; Pellet-Rostaing, S. Pellet-Rostaing, S. Leaching of Rare Earth Elements (REEs) and Impurities from Phosphogypsum: A Preliminary Insight for Further Recovery of Critical Raw Materials. J. Cleaner Prod. 2019, 219, 225–235. DOI: 10.1016/j.jclepro.2019.02.104.
  • Liang, H.; Zhang, P.; Jin, Z.; DePaoli, D. Rare Earths Recovery and Gypsum Upgrade from Florida Phosphogypsum. Miner. Metall. Process. 2017, 34, 201–206. DOI: https://www.osti.gov/pages/biblio/1437893.
  • Lokshin, E.; Tareeva, O.; Elizarova, I. A Study of the Sulfuric Acid Leaching of Rare-Earth Elements, Phosphorus, and Alkali Metals from Phosphodihydrate. Russ. J. Appl. Chem. 2010, 83, 958–964. DOI: https://link.springer.com/article/101134/S1070427210060054.
  • Lütke, S. F.; Oliveira, M. L. S.; Waechter, S. R.; Silva, L. F. O.; Cadaval, T. R. S.; Jr., Duarte, F. A.; Dotto, G. L. Leaching of Rare Earth Elements from Phosphogypsum. Chemosphere 2022, 301, 134661. 10.1016/j.chemosphere.2022.134661.
  • El-Didamony, H.; Ali, M.; Awwad, N.; Fawzy, M.; Attallah, M. Treatment of Phosphogypsum Waste Using Suitable Organic Extractants. J. Radioanal. Nucl. Chem. 2012, 291, 907–914. 10.1007/s10967-011-1547-3.
  • El-Didamony, H.; Gado, H. S.; Awwad, N. S.; Fawzy, M. M.; Attallah, M. F. Treatment of Phosphogypsum Waste Produced from Phosphate Ore Processing. J. Hazard. Mater. 2013, 244-245, 596–602. DOI: 10.1016/j.jhazmat.2012.10.053.
  • Gasser, M. S.; Ismail, Z. H.; Elgoud, E. A.; Hai, F. A.; Ali, O. I.; Aly, H. F. Process for Lanthanides-Y Leaching from Phosphogypsum Fertilizers Using Weak Acids. J. Hazard. Mater. 2019, 378, 120762. 10.1016/j.jhazmat.2019.120762.
  • Genkin, M. V.; Evtushenko, A. V.; Komkov, A. A.; Safiulina, A. M.; Spiridonov, V. S.; Shvetsov, S. V.; Uralchem, J. S. C. Methods for Extracting Rare-Earth Metals and Preparing Gypsum Plaster from Phosphogypsum Hemihydrate. U.S. Patent 9,657,371, 2017. https://patents.google.com/patent/US9657371B2/en.
  • Hopfe, S.; Konsulke, S.; Barthen, R.; Lehmann, F.; Kutschke, S.; Pollmann, K. Screening and Selection of Technologically Applicable Microorganisms for Recovery of Rare Earth Elements from Fluorescent Powder. Waste Manag. 2018, 79, 554–563. 10.1016/j.wasman.2018.08.030.
  • Fathollahzadeh, H.; Eksteen, J. J.; Kaksonen, A. H.; Watkin, E. L. J. Role of Microorganisms in Bioleaching of Rare Earth Elements from Primary and Secondary Resources. Appl. Microbiol. Biotechnol. 2019, 103, 1043–1057. 10.1007/s00253-018-9526-z.
  • Virolainen, S.; Repo, E.; Sainio, T. Recovering Rare Earth Elements from Phosphogypsum Using a Resin-in-Leach Process: Selection of Resin, Leaching Agent, and Eluent. Hydrometallurgy 2019, 189, 105125. DOI: 10.1016/j.hydromet.2019.105125.
  • Medennikov, O. A.; Shabelskaya, N. P.; Yakovenko, E. A.; Astakhova, M. N.; Chernysheva, G. M. 2022 Study of the Process of Processing Phosphogypsum to Obtain an Inorganic Luminescent Material. IOP Conf. Ser. Earth Environ. Sci. 1010, 012128. DOI: https://iopscience.iop.org/article/101088/1755-1315/1010/1/012128/pdf.
  • Sun, M.; Sun, Q.; Zhang, J.; Sheng, J. Surface Modification of Phosphogypsum and Application in Polyolefin Composites. Environ. Sci. Pollut. Res. 2022, 1–14. DOI: 10.1007/s11356-022-20414-8.
  • Essabir, H.; Nekhlaoui, S.; Bensalah, M. O.; Rodrigue, D.; Bouhfid, R.; Qaiss, A. e. k. Phosphogypsum Waste Used as Reinforcing Fillers in Polypropylene Based Composites: Structural, Mechanical and Thermal Properties. J. Polym. Environ. 2017, 25, 658–666. DOI: 10.1007/s10924-016-0853-9.
  • ASTM C1072. Standard Test Methods for Measurement of Masonry Flexural Bond Strength; ASTM: USA, 2019.
  • IS 1077:1992. Common Burnt Clay Building Bricks- Specification. Bureau of Indian Standards: India, 1992.
  • López, F. A.; Gázquez, M.; Alguacil, F. J.; Bolívar, J. P.; García-Díaz, I.; López-Coto, I. Microencapsulation of Phosphogypsum into a Sulfur Polymer Matrix: Physico-Chemical and Radiological Characterization. J. Hazard. Mater. 2011, 192, 234–245. 10.1016/j.jhazmat.2011.05.010.
  • JC/T985-2005. Cementitious Self-Leveling Floor Mortar, 2005.
  • Islam, G. S.; Chowdhury, F. H.; Raihan, M. T.; Amit, S. K. S.; Islam, M. R. Effect of Phosphogypsum on the Properties of Portland Cement. Procedia Eng. 2017, 171, 744–751. DOI: 10.1016/j.proeng.2017.01.440.
  • JTG F80/1-2017. Highway Engineering Quality Inspection and Evaluation Standards [S], 2017.
  • Kabata-Pendias, A. Trace Elements in Soils and Plants. 4th ed. Taylor & Francis Group: Boca Raton, 2011. https://www.taylorfrancis.com/books/mono/101201/b10158/trace-elements-soils-plants-alina-kabata-pendias.
  • United States National Research Council. Mineral Tolerance of Animals. Subcommittee on Mineral Toxicity in Animals. 2nd ed. National Academic Press: Washington, DC, 2005, p 510.
  • Blum, S. C.; Caires, E. F.; Alleoni, L. R. F. Lime and Phosphogypsum Application and Sulfate Retention in Subtropical Soils under No-Till System. J. Soil Sci. Plant Nutr. 2013, 13, 279–300. DOI: http://doi.org/10.4067/S0718-95162013005000024.
  • Mahmoud, E.; Abd El-Kader, N. Heavy Metal Immobilization in Contaminated Soils Using Phosphogypsum and Rice Straw Compost. Land Degrad. Develop. 2015, 26, 819–824. DOI: 10.1002/ldr.2288.
  • Bituh, T.; Petrinec, B.; Skoko, B.; Vucic, Z.; Marovic, G. Measuring and Modelling the Radiological Impact of a Phosphogypsum Deposition Site on the Surrounding Environment. Arh. Hig. Rada. Toksikol. 2015, 66, 31–40. DOI: 10.1515/aiht-2015-66-2587.
  • Papastefanou, C.; Stoulos, S.; Ioannidou, A.; Manolopoulou, M. The Application of Phosphogypsum in Agriculture and the Radiological Impact. J. Environ. Radioact. 2006, 89, 188–198. 10.1016/j.jenvrad.2006.05.005.
  • Dias, N. M. P.; Caires, E. F.; Pires, L. F.; Bacchi, M. A.; Fernandes, E. A. N. Radiological Impact of Phosphogypsum Surface Application in a no-till System in Southern Brazil. Pesq. Agropec. Bras. 2010, 45, 1456–1464. DOI: https://www.scielo.br/j/pab/a/CQTKhwgNxjhpLmr3X5mTzbG/?format = pdf&lang = en.
  • Jowitt, S. M.; Werner, T. T.; Weng, Z.; Mudd, G. M. Recycling of the Rare Earth Elements. Curr. Opin. Green Sustain. Chem. 2018, 13, 1–7. DOI: 10.1016/j.cogsc.2018.02.008.
  • Rychkov, V. N.; Kirillov, E. V.; Kirillov, S. V.; Semenishchev, V. S.; Bunkov, G. M.; Botalov, M. S.; Smyshlyaev, D. V.; Malyshev, A. S. Recovery of Rare Earth Elements from Phosphogypsum. J. Cleaner Prod. 2018, 196, 674–681. DOI: 10.1016/j.jclepro.2018.06.114.
  • Haneklaus, N. H. Unconventional Uranium Resources from Phosphates. In Encyclopedia of Nuclear Energy; Elsevier, 2021, pp 286–291. DOI: 10.1016/B978-0-12-819725-7.00152-5.
  • Ramirez, J. D.; Diwa, R. R.; Palattao, B. L.; Haneklaus, N. H.; Tabora, E. U.; Bautista, A. T.; VII; Reyes, R. Y. Rare Earths in Philippine Phosphogypsum: Use Them or Lose Them. Extractive Indus Soc. 2022, 10, 101082. DOI: 10.1016/j.exis.2022.101082.
  • Wu, F.; Ren, Y.; Qu, G.; Liu, S.; Chen, B.; Liu, X.; Zhao, C.; Li, J. Utilization Path of Bulk Industrial Solid Waste: A Review on the Multi-Directional Resource Utilization Path of Phosphogypsum. J. Environ. Manage. 2022, 313, 114957. 10.1016/j.jenvman.2022.114957.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.