Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 9
229
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cu/Nb2O5, Fe/Nb2O5 and Cu-Fe/Nb2O5 applied in salicylic acid degradation: Parameters studies and photocatalytic activity

, , , , , , & show all
Pages 797-812 | Received 22 May 2022, Accepted 18 Aug 2022, Published online: 07 Sep 2022

References

  • Zhou, S.; Paolo, C.; Di; Wu, X.; Shao, Y.; Seiler, T.-B.; Hollert, H. Optimization of Screening-Level Risk Assessment and Priority Selection of Emerging Pollutants—The Case of Pharmaceuticals in European Surface Waters. Environ. Int. 2019, 128, 1–10.
  • Fidelis, M.; Abreu, E.; Dos Santos, O.; Chaves, E.; Brackmann, R.; Dias, D.; Lenzi, G. Experimental Design and Optimization of Triclosan and 2.8-Diclorodibenzeno-p-Dioxina Degradation by the Fe/Nb2O5/UV System. Catalysts 2019, 9, 343. DOI: 10.3390/catal9040343.
  • Ganiyu, S. O.; Oturan, N.; Raffy, S.; Cretin, M.; Causserand, C.; Oturan, M. A. Efficiency of Plasma Elaborated Sub-Stoichiometric Titanium Oxide (Ti4O7) Ceramic Electrode for Advanced Electrochemical Degradation of Paracetamol in Different Electrolyte Media. Sep. Purif. Technol. 2019, 208, 142–152. DOI: 10.1016/j.seppur.2018.03.076.
  • Mai, N. L.; Ambauen, N.; Hallé, C.; Meyn, T.; Trinh, T. T. Initial Degradation Mechanism of Salicylic Acid via Electrochemical Process. Chem. Phys. 2021, 543, 111071. DOI: 10.1016/j.chemphys.2020.111071.
  • Nishi, I.; Kawakami, T.; Onodera, S. Monitoring the Concentrations of Nonsteroidal anti-Inflammatory Drugs and Cyclooxygenase-Inhibiting Activities in the Surface Waters of the Tone Canal and Edo River Basin. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2015, 50, 1108–1115. DOI: 10.1080/10934529.2015.1047647.
  • Ratola, N.; Cincinelli, A.; Alves, A.; Katsoyiannis, A. Occurrence of Organic Microcontaminants in the Wastewater Treatment Process. A Mini Review. J. Hazard. Mater. 2012, 239-240, 1–18. DOI: 10.1016/j.jhazmat.2012.05.040.
  • Miège, C.; Choubert, J. M.; Ribeiro, L.; Eusèbe, M.; Coquery, M. Fate of Pharmaceuticals and Personal Care Products in Wastewater Treatment Plants—Conception of a Database and First Results. Environ. Pollut. 2009, 157, 1721–1726.
  • Wang, Y.; Wang, Y.; Yu, L.; Wang, J.; Du, B.; Zhang, X. Enhanced Catalytic Activity of Templated-Double Perovskite with 3D Network Structure for Salicylic Acid Degradation under Microwave Irradiation: Insight into the Catalytic Mechanism. Chem. Eng. J. 2019, 368, 115–128. DOI: 10.1016/j.cej.2019.02.174.
  • Ziembowicz, S.; Kida, M. Limitations and Future Directions of Application of the Fenton-Like Process in Micropollutants Degradation in Water and Wastewater Treatment: A Critical Review. Chemosphere 2022, 296, 134041. DOI: 10.1016/j.chemosphere.2022.134041.
  • Silva, A. S.; Seitovna Kalmakhanova, M.; Kabykenovna Massalimova, B.; Sgorlon, J. G.; Jose Luis, D. d. T.; Gomes, H. T. Wet Peroxide Oxidation of Paracetamol Using Acid Activated and Fe/Co-Pillared Clay Catalysts Prepared from Natural Clays. Catalysts 2019, 9, 705. DOI: 10.3390/catal9090705.
  • McBeath, S. T.; Wilkinson, D. P.; Graham, N. J. D. Application of Boron-Doped Diamond Electrodes for the Anodic Oxidation of Pesticide Micropollutants in a Water Treatment Process: A Critical Review. Environ. Sci. Water Res. Technol. 2019, 5, 2090–2107.
  • Schmitt, A.; Mendret, J.; Roustan, M.; Brosillon, S. Ozonation Using Hollow Fiber Contactor Technology and Its Perspectives for Micropollutants Removal in Water: A Review. Sci. Total Environ. 2020, 729, 138664.
  • Abreu, E.; Fidelis, M. Z.; Fuziki, M. E. K.; Malikoski, R. M.; Mastsubara, M. C.; Imada, R. E.; Diaz de Tuesta, J. L.; Gomes, H. T.; Anziliero, M. D.; Baldykowski, B.; et al. Degradation of Emerging Contaminants: Effect of Thermal Treatment on Nb2O5 as Photocatalyst. J. Photochem. Photobiol. A 2021, 419, 113484. DOI: 10.1016/j.jphotochem.2021.113484.
  • Rao, A. N.; Sivasankar, B.; Sadasivam, V. Kinetic Study on the Photocatalytic Degradation of Salicylic Acid Using ZnO Catalyst. J. Hazard. Mater. 2009, 166, 1357–1361.
  • Zhou, C.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. Recent Advances in Niobium-Based Semiconductors for Solar Hydrogen Production. Coord. Chem. Rev. 2020, 419, 213399. DOI: 10.1016/j.ccr.2020.213399.
  • Baba, M.; Kikuchi, T.; Suzuki, R. O. Niobium Powder Synthesized by Calciothermic Reduction of Niobium Hydroxide for Use in Capacitors. J. Phys. Chem. Solids 2015, 78, 101–109. DOI: 10.1016/j.jpcs.2014.11.014.
  • Xu, J.; Weng, X.-J.; Wang, X.; Huang, J.-Z.; Zhang, C.; Muhammad, H.; Ma, X.; Liao, Q.-D. Potential Use of Porous Titanium–Niobium Alloy in Orthopedic Implants: Preparation and Experimental Study of Its Biocompatibility in Vitro. PLoS One. 2013, 8, e79289. DOI: 10.1371/journal.pone.0079289.
  • Pytlicek, Z.; Bendova, M.; Prasek, J.; Mozalev, A. On-Chip Sensor Solution for Hydrogen Gas Detection with the Anodic Niobium-Oxide Nanorod Arrays. Sens. Actuators B 2019, 284, 723–735. DOI: 10.1016/j.snb.2019.01.009.
  • Xu, K.; Wu, B.; Wan, J.; Li, Y.; Li, M. An All Solid State Electrochemical pH Sensor Based on Niobium Modified Electrode. IEEE Sensors J. 2021, 21, 27275–27281. DOI: 10.1109/JSEN.2021.3123633.
  • Bhembe, Y. A.; Dlamini, L. N. Photoreduction of Chromium (VI) by a Composite of Niobium (V) oxide Impregnated with a Ti-Based MOF. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2020, 55, 1003–1020. DOI: 10.1080/10934529.2020.1763706.
  • Skrodczky, K.; Antunes, M. M.; Han, X.; Santangelo, S.; Scholz, G.; Valente, A. A.; Pinna, N.; Russo, P. A. Niobium Pentoxide Nanomaterials with Distorted Structures as Efficient Acid Catalysts. Commun. Chem. 2019, 2, 129.
  • Chen, X.; Yu, T.; Fan, X.; Zhang, H.; Li, Z.; Ye, J.; Zou, Z. Enhanced Activity of Mesoporous Nb2O5 for Photocatalytic Hydrogen Production. Appl. Surf. Sci. 2007, 253, 8500–8506. DOI: 10.1016/j.apsusc.2007.04.035.
  • Shishido, T.; Miyatake, T.; Teramura, K.; Hitomi, Y.; Yamashita, H.; Tanaka, T. Mechanism of Photooxidation of Alcohol over Nb2O5. J. Phys. Chem. C 2009, 113, 18713–18718. DOI: 10.1021/jp901603p.
  • Prado, A. G. S.; Bolzon, L. B.; Pedroso, C. P.; Moura, A. O.; Costa, L. L. Nb2O5 as Efficient and Recyclable Photocatalyst for Indigo Carmine Degradation. Appl. Catal. B 2008, 82, 219–224. DOI: 10.1016/j.apcatb.2008.01.024.
  • Brayner, R.; Bozon-Verduraz, F. Niobium Pentoxide Prepared by Soft Chemical Routes: Morphology, Structure, Defects and Quantum Size Effect. Phys. Chem. Chem. Phys. 2003, 5, 1457–1466. DOI: 10.1039/b210055j.
  • Zhang, Y.; Wang, Q.; Yan, Z.; Ma, D.; Zheng, Y. Visible-Light-Mediated Copper Photocatalysis for Organic Syntheses. Beilstein J. Org. Chem. 2021, 17, 2520–2542.
  • Wen, L.; Liu, B.; Zhao, X.; Nakata, K.; Murakami, T.; Fujishima, A. Synthesis, Characterization, and Photocatalysis of Fe-Doped: A Combined Experimental and Theoretical Study. Int. J. Photoenergy 2012, 2012, 1–10.
  • Bond, G. C. Heterogeneous Catalysis: Principles and Applications. Clarendon Press: Oxford, 1987.
  • Andronic, L.; Isac, L.; Miralles-Cuevas, S.; Visa, M.; Oller, I.; Duta, A.; Malato, S. Pilot-Plant Evaluation of TiO2 and TiO2-Based Hybrid Photocatalysts for Solar Treatment of Polluted Water. J. Hazard. Mater. 2016, 320, 469–478.
  • Ohuchi, T.; Miyatake, T.; Hitomi, Y.; Tanaka, T. Liquid Phase Photooxidation of Alcohol over Niobium Oxide without Solvents. Catal. Today 2007, 120, 233–239. DOI: 10.1016/j.cattod.2006.07.044.
  • Soares, M. S.; Barbosa, R. D.; Cruz, G. d.; Rodrigues, J. A. J.; Ribeiro, S. Effect of Niobium Addition in Support Catalysts Applied in Satellite Propulsion. Mater. Chem. Phys. 2017, 189, 153–161. DOI: 10.1016/j.matchemphys.2016.12.030.
  • Sousa, L. d.; Toniolo, F. S.; Landi, S. M.; Schmal, M. Investigation of Structures and Metallic Environment of the Ni/Nb2O5 by Different in Situ Treatments—Effect on the Partial Oxidation of Methane. Appl. Catal. A 2017, 537, 100–110. DOI: 10.1016/j.apcata.2017.03.015.
  • Jun, J.-W.; Suh, Y.-W.; Suh, D. J.; Lee, Y.-K. Strong Metal-Support Interaction Effect of Pt/Nb2O5 Catalysts on Aqueous Phase Hydrodeoxygenation of 1,6-Hexanediol. Catal. Today 2018, 302, 108–114. DOI: 10.1016/j.cattod.2017.03.026.
  • Castañeda-Juárez, M.; Martínez-Miranda, V.; Almazán-Sánchez, P. T.; Linares-Hernández, I.; Santoyo-Tepole, F.; Vázquez-Mejía, G. Synthesis of TiO2 Catalysts Doped with Cu, Fe, and Fe/Cu Supported on Clinoptilolite Zeolite by an Electrochemical-Thermal Method for the Degradation of Diclofenac by Heterogeneous Photocatalysis. J. Photochem. Photobiol. A Chem. 2019, 380, 111834. DOI: 10.1016/j.jphotochem.2019.04.045.
  • Ziolek, M. Niobium-Containing Catalysts—The State of the Art. Catal. Today 2003, 78, 47–64. DOI: 10.1016/S0920-5861(02)00340-1.
  • Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli, B. Surface Area and Pore Texture of Catalysts. Catal. Today 1998, 41, 207–219. DOI: 10.1016/S0920-5861(98)00050-9.
  • Nicholls, T. P.; Bissember, A. C. Developments in Visible-Light-Mediated Copper Photocatalysis. Tetrahedron Lett. 2019, 60, 150883. DOI: 10.1016/j.tetlet.2019.06.042.
  • Sohrabi, S.; Akhlaghian, F. Light Expanded Clay Aggregate (LECA) as a Support for TiO2, Fe/TiO2, and Cu/TiO2nanocrystalline Photocatalysts: A Comparative Study on the Structure, Morphology, and Activity. J. Iran Chem. SOC 2016, 13, 1785–1796. DOI: 10.1007/s13738-016-0896-9.
  • Bensouici, F.; Bououdina, M.; Dakhel, A. A.; Tala-Ighil, R.; Tounane, M.; Iratni, A.; Souier, T.; Liu, S.; Cai, W. Optical, Structural and Photocatalysis Properties of Cu-Doped TiO2 Thin Films. Appl. Surf. Sci. 2017, 395, 110–116. DOI: 10.1016/j.apsusc.2016.07.034.
  • Furukawa, S.; Tamura, A.; Shishido, T.; Teramura, K.; Tanaka, T. Solvent-Free Aerobic Alcohol Oxidation Using Cu/Nb2O5: Green and Highly Selective Photocatalytic System. Appl. Catal. B 2011, 110, 216–220. DOI: 10.1016/j.apcatb.2011.09.003.
  • Reis, I. B.; Santos, M. D. R.; Oliveira, D. d.; Lourdes, Â. O.; Silva, J. d.; Andrade, G. F. S.; Matos, M. A. C.; Rocha, L. d. Photocatalytic Degradation of Salicylic Acid Employing TiO2 and ZnO in Aqueous Suspension. BJD 2022, 25726–25743. DOI: 10.34117/bjdv8n4-204.
  • Bertinetti, S.; Minella, M.; Barsotti, F.; Maurino, V.; Minero, C.; Özensoy, E.; Vione, D. A Methodology to Discriminate between Hydroxyl Radical-Induced Processes and Direct Charge-Transfer Reactions in Heterogeneous Photocatalysis. J. Adv. Oxid. Technol. 2016, 19, 236–245.
  • Ye, Y.; Feng, Y.; Bruning, H.; Yntema, D.; Rijnaarts, H. H. M. Photocatalytic Degradation of Metoprolol by TiO2 Nanotube Arrays and UV-LED: Effects of Catalyst Properties, Operational Parameters, Commonly Present Water Constituents, and Photo-Induced Reactive Species. Appl. Catal. B 2018, 220, 171–181. DOI: 10.1016/j.apcatb.2017.08.040.
  • Murruni, L.; Conde, F.; Leyva, G.; Litter, M. I. Photocatalytic Reduction of Pb(II) over TiO2: New Insights on the Effect of Different Electron Donors. Appl. Catal. B 2008, 84, 563–569. DOI: 10.1016/j.apcatb.2008.05.012.
  • Tan, T.; Beydoun, D.; Amal, R. Effects of Organic Hole Scavengers on the Photocatalytic Reduction of Selenium Anions. J. Photochem. Photobiol. A 2003, 159, 273–280. DOI: 10.1016/S1010-6030(03)00171-0.
  • Soares, O.; Pereira, M. F. R.; Órfão, J. J. M.; Faria, J. L.; Silva, C. G. Photocatalytic Nitrate Reduction over Pd–Cu/TiO2. Chem. Eng. J. 2014, 251, 123–130. DOI: 10.1016/j.cej.2014.04.030.
  • Sá, J.; Agüera, C. A.; Gross, S.; Anderson, J. A. Photocatalytic Nitrate Reduction over Metal Modified TiO2. Appl. Catal. B 2009, 85, 192–200. DOI: 10.1016/j.apcatb.2008.07.014.
  • Prairie, M. R.; Evans, L. R.; Stange, B. M.; Martinez, S. L. An Investigation of Titanium Dioxide Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals. Environ. Sci. Technol. 1993, 27, 1776–1782. DOI: 10.1021/es00046a003.
  • Vione, D.; Picatonotto, T.; Carlotti, M. E. Photodegradation of Phenol and Salicylic Acid by Coated Rutile-Based Pigments: A New Approach for the Assessment of Sunscreen Treatment Efficiency. J. Cosm. Sci. 2003, 54, 513–524.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.