Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 9
177
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Comparing the efficiency of N-doped TiO2 and commercial TiO2 as photo catalysts for amoxicillin and ciprofloxacin photo-degradation under solar irradiation

ORCID Icon, &
Pages 813-829 | Received 05 Dec 2021, Accepted 21 Aug 2022, Published online: 08 Sep 2022

References

  • Ali, A. H. Photocatalysis Degradation Process for the Removal of Amoxicillin Residuals from an Aqueous Solution, 2020.
  • Stan, M.; Lung, I.; Soran, M. L.; Leostean, C.; Popa, A.; Stefan, M.; Lazar, M. D.; Opris, O.; Silipas, T. D.; Porav, A. S. Removal of Antibiotics from Aqueous Solutions by Green Synthesized Magnetite Nanoparticles with Selected Agro-Waste Extracts. Process Safe Environ. Protect. 2017, 107, 357–372. DOI: 10.1016/j.psep.2017.03.003.
  • Chang, P.; Jiang, W.; Li, Z.; Jean, J.; Kuo, C. Pharmaceutical Analysis Antibiotic Tetracycline in the Environments—A Review. Res. Rev. J. Pharma. Anal. 2015, 4, 15–40.
  • Alobaidi, R. A. K.; Ulucan-Altuntas, K.; Mhemid, R. K. S.; Manav-Demir, N.; Cinar, O. Biodegradation of Emerging Pharmaceuticals from Domestic Wastewater by Membrane Bioreactor: The Effect of Solid Retention Time. IJERPH. 2021, 18, 3395. DOI: 10.3390/ijerph18073395.
  • Varma, K. S.; Tayade, R. J.; Shah, K. J.; Joshi, P. A.; Shukla, A. D.; Gandhi, V. G. Photocatalytic Degradation of Pharmaceutical and Pesticide Compounds (PPCs) Using Doped TiO2 Nanomaterials: A Review. Water-Energ. Nexus. 2020, 3, 46–61. DOI: 10.1016/j.wen.2020.03.008.
  • Godini, H.; Sheikhmohammadi, A.; Abbaspour, L.; Heydari, R.; Khorramabadi, G. S.; Sardar, M.; Mahmoudi, Z. Energy Consumption and Photochemical Degradation of Imipenem/Cilastatin Antibiotic by Process of UVC/Fe2+/H2O2 through Response Surface Methodology. Optik. 2019, 182, 1194–1203. DOI: 10.1016/j.ijleo.2019.01.071.
  • Kurt, A.; Mert, B. K.; Özengin, N.; Sivrioğlu, Ö.; Yonar, T. Treatment of Antibiotics in Wastewater Using Advanced Oxidation Processes (AOPs). In Physico-Chemical Wastewater Treatment and Resource Recovery, In Tech, 2017. DOI:10.5772/67538
  • Zeng, X.; Sun, X.; Wang, Y. Photocatalytic Degradation of Flumequine by N-Doped TiO2 Catalysts under Simulated Sunlight. Environ. Eng. Res. 2020, 26, 200524–200520. DOI: 10.4491/eer.2020.524.
  • Pereira, J.; Reis, A. C.; Nunes, O. C.; Borges, M. T.; Vilar, V. J. P.; Boaventura, R. A. R. Assessment of Solar Driven TiO2-Assisted Photocatalysis Efficiency on Amoxicillin Degradation. Environ. Sci. Pollut. Res. Int. 2014, 21, 1292–1303. DOI: 10.1007/s11356-013-2014-1.
  • Review, S.; Janus, M.; Szyma, K. C-,N- and S-Doped TiO 2 Photocatalysts: A Review. Catalysts. 2021, 11, 144.
  • Buthiyappan, A.; Abdul Aziz, A. R.; Wan Daud, W. M. A. Recent Advances and Prospects of Catalytic Advanced Oxidation Process in Treating Textile Effluents. Rev. Chem. Eng. 2016, 32, 1–47. DOI: 10.1515/revce-2015-0034.
  • Behnajady, M. A.; Modirshahla, N.; Shokri, M.; Elham, H.; Zeininezhad, A. The Effect of Particle Size and Crystal Structure of Titanium Dioxide Nanoparticles on the Photocatalytic Properties. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2008, 43, 460–467. DOI: 10.1080/10934520701796267.
  • Sathish, M.; Viswanathan, B.; Viswanath, R. P.; Gopinath.; C. S.; Synthesis. Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst. Chem. Mater. 2005, 17, 6349–6353.
  • Teoh, W. Y.; Scott, J. A.; Amal, R. Progress in Heterogeneous Photocatalysis: From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors. J. Phys. Chem. Lett. 2012, 3, 629–639. DOI: 10.1021/jz3000646.
  • Gao, X.; Zhou, B.; Yuan, R. Doping a Metal (Ag, Al, Mn, Ni and Zn) on Tio2 Nanotubes and Its Effect on Rhodamine B Photocatalytic Oxidation. Environ. Eng. Res. 2015, 20, 329–335. DOI: 10.4491/eer.2015.062.
  • Barkul, R. P.; Koli, V. B.; Shewale, V. B.; Patil, M. K.; Delekar, S. D. Visible Active Nanocrystalline N-Doped Anatase TiO2 Particles for Photocatalytic Mineralization Studies. Mater. Chem. Phys. 2016, 173, 42–51. DOI: 10.1016/j.matchemphys.2016.01.035.
  • Selvaraj, A.; Sivakumar, S.; Ramasamy, A. K.; Balasubramanian, V. Photocatalytic Degradation of Triazine Dyes over N-Doped TiO2 in Solar Radiation. Res. Chem. Intermed. 2013, 39, 2287–2302. DOI: 10.1007/s11164-012-0756-x.
  • Gomes, J.; Lincho, J.; Domingues, E.; Quinta-Ferreira, R. M.; Martins, R. C. N-TiO2 Photocatalysts: A Review of Their Characteristics and Capacity for Emerging Contaminants Removal. Water. 2019, 11, 373. DOI: 10.3390/w11020373.
  • Ashkarran, A. A.; Hamidinezhad, H.; Haddadi, H.; Mahmoudi, M. Double-Doped TiO2 Nanoparticles as an Efficient Visible-Light-Active Photocatalyst and Antibacterial Agent under Solar Simulated Light. Appl. Surf. Sci. 2014, 301, 338–345. DOI: 10.1016/j.apsusc.2014.02.074.
  • Aba-Guevara, C. G.; Medina-Ramírez, I. E.; Hernández-Ramírez, A.; Jáuregui-Rincón, J.; Lozano-Álvarez, J. A.; Rodríguez-López, J. L. Comparison of Two Synthesis Methods on the Preparation of Fe, N-Co-Doped TiO2 Materials for Degradation of Pharmaceutical Compounds under Visible Light. Ceram. Int. 2017, 43, 5068–5079. DOI: 10.1016/j.ceramint.2017.01.018.
  • Hou, C.; Hu, B.; Zhu, J. Photocatalytic Degradation of Methylene Blue over TiO2 Pretreated with Varying Concentrations of NaOH. Catalysts. 2018, 8, 575. DOI: 10.3390/catal8120575.
  • Pasikhani, J. V.; Gilani, N.; Pirbazari, A. E. Improvement the Wastewater Purification by TiO2 Nanotube Arrays: The Effect of Etching-Step on the Photo-Generated Charge Carriers and Photocatalytic Activity of Anodic TiO2 Nanotubes. Solid State Sci. 2018, 84, 57–74. DOI: 10.1016/j.solidstatesciences.2018.08.003.
  • Shetty, R.; Chavan, V. B.; Kulkarni, P. S.; Kulkarni, B. D.; Kamble, S. P. Photocatalytic Degradation of Pharmaceuticals Pollutants Using N-Doped TiO2 Photocatalyst: Identification of CFX Degradation Intermediates. Indian Chem. Eng. 2017, 59, 177–199. DOI: 10.1080/00194506.2016.1150794.
  • Maia, A. S.; Ribeiro, A. R.; Amorim, C. L.; Barreiro, J. C.; Cass, Q. B.; Castro, P. M. L.; Tiritan, M. E. Degradation of Fluoroquinolone Antibiotics and Identification of Metabolites/Transformation Products by Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A. 2014, 1333, 87–98. DOI: 10.1016/j.chroma.2014.01.069.
  • Caratto, V.; Setti, L.; Campodonico, S.; Carnasciali, M. M.; Botter, R.; Ferretti, M. Synthesis and Characterization of Nitrogen-Doped TiO2 Nanoparticles Prepared by Sol–Gel Method. J. Sol-Gel Sci. Technol. 2012, 63, 16–22. DOI: 10.1007/s10971-012-2756-0.
  • Saeed, A. M.; Salih, E. S. Indirect Spectrofluorometric Method for the Determination of Cefotaxime Sodium, Ciprofloxacin Hydrochloride and Famotidine in Pharmaceuticals Using Bromate-Bromide and Acriflavine Dye. Baghdad Sci. J. 2020, 17, 0066. DOI: 10.21123/bsj.2020.17.1.0066.
  • Nikravan, A. Amoxicillin and Ampicillin Removal from Wastewater by Fenton and Photo-Fenton Processes. 2015, 122, 1–122.
  • Zhang, H.; Liang, Y.; Wu, X.; Zheng, H. Enhanced Photocatalytic Activity of (Zn, N)-Codoped TiO 2 Nanoparticles. Mater. Res. Bull. 2012, 47, 2188–2192. DOI: 10.1016/j.materresbull.2012.06.008.
  • Subramanian, S.; Noh, J. S.; Schwarz, J. A. Determination of the Point of Zero Charge of Composite Oxides. J. Catal. 1988, 114, 433–439. DOI: 10.1016/0021-9517(88)90046-2.
  • Sander, R. Compilation of Henry’s Law Constants (Version 4.0) for Water as Solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981. DOI: 10.5194/acp-15-4399-2015.
  • Khoshnamvand, N.; Kord Mostafapour, F.; Mohammadi, A.; Faraji, M. Response Surface Methodology (RSM) Modeling to Improve Removal of Ciprofloxacin from Aqueous Solutions in Photocatalytic Process Using Copper Oxide Nanoparticles (CuO/UV). AMB Express. 2018, 8, 48. DOI: 10.1186/s13568-018-0579-2.
  • Aslani, H.; Nabizadeh, R.; Nasseri, S.; Mesdaghinia, A.; Alimohammadi, M.; Mahvi, A. H.; Rastkari, N.; Nazmara, S. Application of Response Surface Methodology for Modeling and Optimization of Trichloroacetic Acid and Turbidity Removal Using Potassium Ferrate(VI). Desalin. Water Treat. 2016, 57, 25317–25328. DOI: 10.1080/19443994.2016.1147380.
  • Sarabia, L. A.; Ortiz, M. C. Response Surface Methodology. Comprehens. Chemometric. 2009, 1, 345–390.
  • Malakootian, M.; Nasiri, A.; Amiri Gharaghani, M. Photocatalytic Degradation of Ciprofloxacin Antibiotic by TiO 2 Nanoparticles Immobilized on a Glass Plate. Chem. Eng. Commun. 2020, 207, 56–72. DOI: 10.1080/00986445.2019.1573168.
  • Chatterjee, A.; Nishanthini, D.; Sandhiya, N.; Abraham, J. Biosynthesis of Titanium Dioxide Nanoparticles Using Vigna Radiata. Asian J. Pharm. Clin. Res. 2016, 9, 85–88.
  • Raja, P.; Bensimon, M.; Kulik, A.; Foschia, R.; Laub, D.; Albers, P.; Renganathan, R.; Kiwi, J. Dynamics and Characterization of an Innovative Raschig Rings–TiO2 Composite Photocatalyst. J. Mol. Catal. A: Chem. 2005, 237, 215–223. DOI: 10.1016/j.molcata.2005.04.060.
  • Scarpelli, F.; Mastropietro, T. F.; Poerio, T.; Godbert, N. Mesoporous TiO2 Thin Films: State of the Art. In Titanium Dioxide – Material for a Sustainable Environment; InTech, 2018. DOI: 10.5772/intechopen.74244
  • Safni, S.; Wahyuni, M. R.; Khoiriah, K.; Yusuf, Y. Degradation of Phenol by Photolysis Using N-Doped TiO2 Catalyst. Molekul 2019, 14, 6. DOI: 10.20884/1.jm.2019.14.1.447.
  • Mohtashamian, S.; Tabish, T.; Zaman, B.; Tariq, Z. Characterization and Synthesis of Nanosized TiO2 Particles. Ann. Fac. Eng. Hunedoara – Int. J. Eng. 2013, 3, 313–316.
  • Huang, D. G.; Liao, S. J.; Zhou, W. B.; Quan, S. Q.; Liu, L.; He, Z. J.; Wan, J. B. Synthesis of Samarium- and Nitrogen-co-Doped TiO2 by Modified Hydrothermal Method and Its Photocatalytic Performance for the Degradation of 4-Chlorophenol. J. Phys. Chem. Solids. 2009, 70, 853–859. DOI: 10.1016/j.jpcs.2009.04.005.
  • Pang, Y. L.; Abdullah, A. Z. Effect of Carbon and Nitrogen co-Doping on Characteristics and Sonocatalytic Activity of TiO2 Nanotubes Catalyst for Degradation of Rhodamine B in Water. Chem. Eng. J. 2013, 214, 129–138. DOI: 10.1016/j.cej.2012.10.036.
  • Nabipour, H.; Hosaini Sadr, M.; Thomas, N. Synthesis, Characterisation and Sustained Release Properties of Layered Zinc Hydroxide Intercalated with Amoxicillin Trihydrate. J. Exp. Nanosci. 2015, 10, 1269–1284. DOI: 10.1080/17458080.2014.998301.
  • Dong, F.; Zhao, W.; Wu, Z. Characterization and Photocatalytic Activities of C, N and S co-Doped TiO2 with 1D Nanostructure Prepared by the Nano-Confinement Effect. Nanotechnology. 2008, 19, 365607. DOI: 10.1088/0957-4484/19/36/365607.
  • Azeez, F.; Al-Hetlani, E.; Arafa, M.; Abdelmonem, Y.; Nazeer, A. A.; Amin, M. O.; Madkour, M. The Effect of Surface Charge on Photocatalytic Degradation of Methylene Blue Dye Using Chargeable Titania Nanoparticles. Sci. Rep. 2018, 8, 7104. DOI: 10.1038/s41598-018-25673-5.
  • Marques, J.; Gomes, T. D.; Forte, M. A.; Silva, R. F.; Tavares, C. J. A New Route for the Synthesis of Highly-Active N-Doped TiO2 Nanoparticles for Visible Light Photocatalysis Using Urea as Nitrogen Precursor. Catal. Today. 2019, 326, 36–45. DOI: 10.1016/j.cattod.2018.09.002.
  • Chaker, H.; Ameur, N.; Saidi-Bendahou, K.; Djennas, M.; Fourmentin, S. Modeling and Box-Behnken Design Optimization of Photocatalytic Parameters for Efficient Removal of Dye by Lanthanum-Doped Mesoporous TiO2. J. Environ. Chem. Eng. 2021, 9, 104584. DOI: 10.1016/j.jece.2020.104584.
  • Tetteh, E. K.; Obotey Ezugbe, E.; Rathilal, S.; Asante-Sackey, D. Removal of COD and SO42− from Oil Refinery Wastewater Using a Photo-Catalytic System—Comparing TiO2 and Zeolite Efficiencies. Water. 2020, 12, 214. DOI: 10.3390/w12010214.
  • Azzaz, A. A.; Jellali, S.; Hamed, N. B. H.; Jery, A.; El; Khezami, L.; Assadi, A. A.; Amrane, A. Photocatalytic Treatment of Wastewater Containing Simultaneous Organic and Inorganic Pollution: Competition and Operating Parameters Effects. Catalysts 2021, 11, 855. DOI: 10.3390/catal11070855.
  • Cano, P. A.; Jaramillo-Baquero, M.; Zúñiga-Benítez, H.; Londoño, Y. A.; Peñuela, G. A. Use of Simulated Sunlight Radiation and Hydrogen Peroxide in Azithromycin Removal from Aqueous Solutions: Optimization & Mineralization Analysis. Emerg. Contamin. 2020, 6, 53–61. DOI: 10.1016/j.emcon.2019.12.004.
  • Nyamukamba, P.; Okoh, O.; Mungondori, H.; Taziwa, R.; Zinya, S. Synthetic Methods for Titanium Dioxide Nanoparticles: A Review. In Titanium Dioxide – Material for a Sustainable Environment; IntechOpen. 2018. DOI: 10.5772/intechopen.75425
  • Sofronov, D.; Rucki, M.; Demidov, O.; Doroshenko, A.; Sofronova, E.; Shaposhnyk, A.; Kapustnik, O.; Mateychenko, P.; Kucharczyk, W. Formation of TiO2particles during Thermal Decomposition of Ti(NO3)4, TiOF2and TiOSO4. J. Mater. Res. Technol. 2020, 9, 12201–12212. DOI: 10.1016/j.jmrt.2020.08.115.
  • Farzadkia, M.; Bazrafshan, E.; Esrafili, A.; Yang, J.-K.; Shirzad-Siboni, M. Photocatalytic Degradation of Metronidazole with Illuminated TiO2 Nanoparticles. J Environ Health Sci Eng. 2015, 13, 35. DOI: 10.1186/s40201-015-0194-y.
  • Dehghan, A.; Zarei, A.; Jaafari, J.; Shams, M.; Mousavi Khaneghah, A. Tetracycline Removal from Aqueous Solutions Using Zeolitic Imidazolate Frameworks with Different Morphologies: A Mathematical Modeling. Chemosphere. 2019, 217, 250–260. DOI: 10.1016/j.chemosphere.2018.10.166.
  • Fazilati, M. Photocatalytic Degradation of Amoxicillin, Cephalexin, and Tetracycline from Aqueous Solution: comparison of Efficiency in the Usage of TiO2, ZnO, or GO-Fe3O4 Nanoparticles. DWT. 2019, 169, 222–231. DOI: 10.5004/dwt.2019.24632.
  • Leong, K. H.; Gan, B. L.; Ibrahim, S.; Saravanan, P. Synthesis of Surface Plasmon Resonance (SPR) Triggered Ag/TiO2 Photocatalyst for Degradation of Endocrine Disturbing Compounds. Appl. Surf. Sci. 2014, 319, 128–135. DOI: 10.1016/j.apsusc.2014.06.153.
  • Chen, M.; Yao, J.; Huang, Y.; Gong, H.; Chu, W. Enhanced Photocatalytic Degradation of Ciprofloxacin over Bi2O3/(BiO)2CO3 Heterojunctions: Efficiency, Kinetics, Pathways, Mechanisms and Toxicity Evaluation. Chem. Eng. J. 2018, 334, 453–461. DOI: 10.1016/j.cej.2017.10.064.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.