Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 10
103
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Adsorption studies of the hybrid material obtained from the functionalization of silica with alfa and gamma cyclodextrins

, , , & ORCID Icon
Pages 841-851 | Received 07 Apr 2022, Accepted 24 Aug 2022, Published online: 06 Sep 2022

References

  • Sharma, R.; Nguyen, T. T.; Grote, U. Changing Consumption Catterns – Drivers and the Environmental Impact. Sustainability 2018, 10, 4190. DOI: 10.3390/su10114190.
  • Kautish, P.; Sharma, R.; Mangla, S. K.; Jabeen, F.; Awan, U. Understanding Choice Behavior towards Plastic Consumption: An Emerging Market Investigation. Resour. Conserv. Recycl. 2021, 174, 105828. DOI: 10.1016/j.resconrec.2021.105828.
  • Ahmad, T.; Aadil, R. M.; Ahmed, H.; Rahman, U. u.; Soares, B. C. V.; Souza, S. L. Q.; Pimentel, T. C.; Scudino, H.; Guimarães, J. T.; Esmerino, E. A.; et al. Treatment and Utilization of Dairy Industrial Waste: A Review. Trends Food Sci. Technol. 2019, 88, 361–372. DOI: 10.1016/j.tifs.2019.04.003.
  • Qamar, S. A.; Ashiq, M.; Jahangeer, M.; Riasat, A.; Bilal, M. Chitosan-Based Hybrid Materials as Adsorbents for Textile Dyes–A Review. Case Stud. Chem. Environ. Eng. 2020, 2, 100021.
  • Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic Organic Dyes as Contaminants of the Aquatic Environment and Their Implications for Ecosystems: A Review. Sci. Total Environ. 2020, 717, 137222.
  • Bafana, A.; Devi, S. S.; Chakrabarti, T. Azo Dyes: Past, Present and the Future. Environ. Rev. 2011, 19, 350–371. DOI: 10.1139/a11-018.
  • Alderete, B. L.; da Silva, J.; Godoi, R.; da Silva, F.; Taffarel, S. R.; da Silva, L.; Garcia, A. L. H.; Júnior, H. M.; de Amorim, H.; Picada, J. N. Evaluation of Toxicity and Mutagenicity of a Synthetic Effluent Containing Azo Dye after Advanced Oxidation Process Treatment. Chemosphere 2021, 263, 128291. DOI: 10.1016/j.chemosphere.2020.128291.
  • Jillella, G. K.; Roy, K. QSAR Modelling of Organic Dyes for Their Acute Toxicity in Daphnia Magna Using 2D-Descriptors. SAR QSAR Environ. Res. 2022, 33, 111–139.
  • Al-Ghouti, M. A.; Al-Absi, R. S. Mechanistic Understanding of the Adsorption and Thermodynamic Aspects of Cationic Methylene Blue Dye onto Cellulosic Olive Stones Biomass from Wastewater. Sci. Rep. 2020, 10, 1–18.
  • Biehl, P.; von der Lühe, M.; Schacher, F. H. Reversible Adsorption of Methylene Blue as Cationic Model Cargo onto Polyzwitterionic Magnetic Nanoparticles. Macromol. Rapid Commun. 2018, 39, 1800017. DOI: 10.1002/marc.201800017.
  • Zhou, Y.; Lu, J.; Zhou, Y.; Liu, Y. Recent Advances for Dyes Removal Using Novel Adsorbents: A Review. Environ Pollut. 2019, 252, 352–365.
  • Venceslau, A. F. A.; Mendonça, A. C.; Carvalho, L. B.; Ferreira, G. M. D.; Thomasi, S. S.; Pinto, L. M. A. Removal of Methylene Blue from an Aqueous Medium Using Atemoya Peel as a Low-Cost Adsorbent. Water, Air, Soil Pollut. 2021, 232, 1–18.
  • Pandey, P. C.; Mitra, M. D.; Tiwari, A. K.; Singh, S. Synthetic Incorporation of Palladium-Nickel Bimetallic Nanoparticles within Mesoporous Silica/Silica Nanoparticles as Efficient and Cheaper Catalyst for Both Cationic and Anionic Dyes Degradation. J. Environ. Sci. Health A. Tox. Hazard Subst. Environ. Eng. 2021, 56, 460–472. DOI: 10.1080/10934529.2021.1886793.
  • Tripathy, S.; Sahu, S.; Patel, R. K.; Panda, R. B.; Kar, P. K. Novel Fe3O4‐Modified Bichar Derived from Citrus Bergamia Peel: A Green Synthesis Approach for Adsorptive Removal of Methylene Blue. ChemistrySelect 2022, 7, e202103595. DOI: 10.1002/slct.202103595.
  • Guo, Q.; Wu, X.; Ji, Y.; Hao, Y.; Liao, S.; Cui, Z.; Li, J.; Younas, M.; He, B. pH-Responsive Nanofiltration Membrane Containing Chitosan for Dye Separation. J. Membr. Sci. 2021, 635, 119445. DOI: 10.1016/j.memsci.2021.119445.
  • Jiang, M.; Ye, K.; Deng, J.; Lin, J.; Ye, W.; Zhao, S.; Van der Bruggen, B. Conventional Ultrafiltration as Effective Strategy for Dye/Salt Fractionation in Textile Wastewater Treatment. Environ. Sci. Technol. 2018, 52, 10698–10708.
  • Santana, R.; Napoleão, D. C.; Duarte, M. Treatment of Textile Matrices Using Fenton Processes: influence of Operational Parameters on Degradation Kinetics, Ecotoxicity Evaluation and Application in Real Wastewater. J. Environ. Sci. Health A. Tox. Hazard Subst. Environ. Eng. 2021, 56, 1165–1178. DOI: 10.1080/10934529.2021.1965816.
  • Pacheco-Álvarez, M. O.; Picos, A.; Pérez-Segura, T.; Peralta-Hernández, J. M. Proposal for Highly Efficient Electrochemical Discoloration and Degradation of Azo Dyes with Parallel Arrangement Electrodes. J. Electroanal. Chem. 2019, 838, 195–203. DOI: 10.1016/j.jelechem.2019.03.004.
  • Bharathi, D.; Nandagopal, J. G. T.; Ranjithkumar, R.; Gupta, P. K.; Djearamane, S. Microbial Approaches for Sustainable Remediation of Dye-Contaminated Wastewater: A Review. Arch. Microbiol. 2022, 204, 1–11.
  • Ghuge, S. P.; Saroha, A. K. Catalytic Ozonation of Dye Industry Effluent Using Mesoporous Bimetallic Ru-Cu/SBA-15 Catalyst. Process Saf. Environ. Prot. 2018, 118, 125–132. DOI: 10.1016/j.psep.2018.06.033.
  • Azari, A.; Nabizadeh, R.; Nasseri, S.; Mahvi, A. H.; Mesdaghinia, A. R. Comprehensive Systematic Review and Meta-Analysis of Dyes Adsorption by Carbon-Based Adsorbent Materials: Classification and Analysis of Last Decade Studies. Chemosphere 2020, 250, 126238. DOI: 10.1016/j.chemosphere.2020.126238.
  • Mashkoor, F.; Nasar, A. Magsorbents: Potential Candidates in Wastewater Treatment Technology – A Review on the Removal of Methylene Blue Dye. J. Magn. Magn. Mater. 2020, 500, 166408. DOI: 10.1016/j.jmmm.2020.166408.
  • Martins, L.; Venceslau, A. F. A.; Brandão, R. M.; Braga, M. A.; Batista, L. R.; Cardoso, M.; das, G.; Pinto, L. M. A. Antibacterial and Antifungal Activities and Toxicity of the Essential Oil from Callistemon Viminalis Complexed with β-Cyclodextrin. Curr. Microbiol. 2021, 78, 2251–2258.
  • Pinto, L. M. A.; Adeoye, O.; Thomasi, S. S.; Francisco, A. P.; Cabral-Marques, H. A Single-Step Multicomponent Synthesis of a Quinoline Derivative and the Characterization of Its Cyclodextrin Inclusion Complex. J. Mol. Struct. 2021, 1237, 130391. DOI: 10.1016/j.molstruc.2021.130391.
  • Torres, L. H.; Carvalho, L. d.; Fátima Abreu Venceslau, A.; Jaime, C.; Matos Alves Pinto, L. Interaction with Modified Cyclodextrin as a Way to Increase the Antimalarial Activity of Primaquine. Curr. Drug Discov. Technol. 2020, 17, 670–681. DOI: 10.2174/1570163816666190719154258.
  • Crini, G. Review: A History of Cyclodextrins. Chem Rev. 2014, 114, 10940–10975.
  • Carvalho, L. B. D.; Carvalho, T. G.; Magriotis, Z. M.; Ramalho, T. D. C.; Pinto, L. Cyclodextrin/Silica Hybrid Adsorbent for Removal of Methylene Blue in Aqueous Media. J. Incl. Phenom. Macrocycl. Chem. 2014, 78, 1–4.
  • Carvalho, L. B.; Chagas, P. M. B.; Marques, T. R.; Razafitianamaharavo, A.; Pelletier, M.; Nolis, P.; Jaime, C.; Thomasi, S. S.; Pinto, L. Removal of the Synthetic Hormone Methyltestosterone from Aqueous Solution Using a β-Cyclodextrin/Silica Composite. J. Environ. Chem. Eng. 2019, 7, 103492. DOI: 10.1016/j.jece.2019.103492.
  • Baracho, R. V.; Carvalho, L. B.; Andrade, J. M.; Venceslau, A. F. A.; Rocha, D. A.; Pinto, L. M. A. Obtention and Characterization of a Silica and Cyclodextrin Hybrid Material. Quim. Nova 2015, 38, 1063–1067.
  • Lagergren, S. About the Theory of so Called Adsorption of Soluble Substances. K. Sven. Vetenskapsakad. Handl. 1898, 24, 1–39.
  • Ho, Y. S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Elovich, S. Y.; Zhabrova, G. M. Mechanism of the Catalytic Hydrogenation of Ethylene on Nickel. I. Kinetics of the Process. J. Phys. Chem. 1939, 13, 1761–1764.
  • Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. DOI: 10.1021/ja02242a004.
  • Freundlich, H. M. F. Over the Adsorption in Solution. J. Phy. Chem. 1906, 57, 385–470.
  • Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Database] DOI: 10.1063/1.1746922.
  • Temkin, M. I.; Pyzhev, V. Kinetic of Ammonia Synthesis on Promoted Iron Catalyst. Acta Phy. Chem. URSS. 1940, 12, 327–356.
  • Mohammed, R. R.; Ketabchi, M. R.; McKay, G. Combined Magnetic Field and Adsorption Process for Treatment of Biologically Treated Palm Oil Mill Effluent (POME). Chem. Eng. J. 2014, 243, 31–42. DOI: 10.1016/j.cej.2013.12.084.
  • Magriotis, Z. M.; Leal, P. V. B.; Sales, P. F.; Papini, R. M.; Viana, P. R. M. Adsorption of Etheramine on Kaolinite: A Cheap Alternative for the Treatment of Mining Effluents. J. Hazard Mater. 2010, 184, 465–471.
  • Chen, M.; Chen, Y.; Diao, G. Adsorption Kinetics and Thermodynamics of Methylene Blue onto p-Tert-Butyl-Calix[4,6,8]Arene-Bonded Silica Gel. J. Chem. Eng. Data. 2010, 55, 5109–5116. DOI: 10.1021/je1006696.
  • Cai, W.; Sun, T.; Shao, X.; Chipot, C. Can the Anomalous Aqueous Solubility of β-Cyclodextrin Be Explained by Its Hydration Free Energy Alone? Phys. Chem. Chem. Phys. 2008, 10, 3236–3243.
  • Gupta, S. S.; Bhattacharyya, K. G. Kinetics of Adsorption of Metal Ions on Inorganic Materials: A Review. Adv. Colloid Interface Sci. 2011, 162, 39–58.
  • Febrianto, J.; Kosasih, A. N.; Sunarso, J.; Ju, Y. H.; Indraswati, N.; Ismadji, S. Equilibrium and Kinetic Studies in Adsorption of Heavy Metals Using Biosorbent: A Summary of Recent Studies. J. Hazard Mater. 2009, 162, 616–645.
  • Javadian, H. Application of Kinetic, Isotherm and Thermodynamic Models for the Adsorption of Co(II) Ions on Polyaniline/Polypyrrole Copolymer Nanofibers from Aqueous Solution. J. Ind. Eng. Chem. 2014, 20, 4233–4241. DOI: 10.1016/j.jiec.2014.01.026.
  • Jiang, H. L.; Lin, J. C.; Hai, W.; Tan, H. W.; Luo, Y. W.; Xie, X. L.; Cao, Y.; He, F. A. A Novel Crosslinked β-Cyclodextrin-Based Polymer for Removing Methylene Blue from Water with High Efficiency. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 560, 59–68. DOI: 10.1016/j.colsurfa.2018.10.004.
  • Gao, Y.; Guo, R.; Feng, Y.; Zhang, L.; Wang, C.; Song, J.; Jiao, T.; Zhou, J.; Peng, Q. Self-Assembled Hydrogels Based on Poly-Cyclodextrin and Poly-Azobenzene Compounds and Applications for Highly Efficient Removal of Bisphenol a and Methylene Blue. ACS Omega 2018, 3, 11663–11672. DOI: 10.1021/acsomega.8b01810.
  • de Jesus, M. B.; Fraceto, L. F.; Martini, M. F.; Pickholz, M.; Ferreira, C. V.; Paula, E. Non-Inclusion Complexes between Riboflavin and Cyclodextrins. J. Pharm. Pharmacol. 2012, 64, 832–842. DOI: 10.1111/j.2042-7158.2012.01492.x.
  • Vegliò, F.; Esposito, A.; Reverberi, A. P. Standardisation of Heavy Metal Biosorption Tests: equilibrium and Modelling Study. Process Biochem. 2003, 38, 953–961. DOI: 10.1016/S0032-9592(02)00235-2.
  • Ma, Y. X.; Shao, W. J.; Sun, W.; Kou, Y. L.; Li, X.; Yang, H. P. One-Step Fabrication of β-Cyclodextrin Modified Magnetic Graphene Oxide Nanohybrids for Adsorption of Pb(II), Cu(II) and Methylene Blue in Aqueous Solutions. Appl. Surf. Sci. 2018, 459, 544–553. DOI: 10.1016/j.apsusc.2018.08.025.
  • Jiang, L. W.; Zeng, F. T.; Zhang, Y.; Xu, M. Y.; Xie, Z. W.; Wang, H. Y.; Wu, Y. X.; He, F. A.; Jiang, H. L. Preparation of a Novel Fe3O4/Graphite Oxide Nanosheet/Citric Acid-Crosslinked β-Cyclodextrin Polymer Composite to Remove Methylene Blue from Water. Adv. Powder Technol. 2021, 32, 492–503. DOI: 10.1016/j.apt.2020.12.026.
  • Verma, M.; Lee, I.; Hong, Y.; Kumar, V.; Kim, H. Multifunctional β-cyclodextrin-EDTA-Chitosan Polymer Adsorbent Synthesis for Simultaneous Removal of Heavy Metals and Organic Dyes from Wastewater. Environ Pollut. 2022, 292, 118447.
  • Duan, Z.; Wei, S.; Bian, H.; Guan, C.; Zhu, L.; Xia, D. Inclusion as an Efficient Purification Method for Specific Removal of Tricyclic Organic Sulfur/Nitrogen Pollutants in Fuel and Effluent with Cyclodextrin Polymers. Sep. Purif. Technol. 2021, 254, 117643. DOI: 10.1016/j.seppur.2020.117643.
  • Amrhar, O.; Berisha, A.; El Gana, L.; Nassali, H.; Elyoubi, M. S. Removal of Methylene Blue Dye by Adsorption onto Natural Muscovite Clay: experimental, Theoretical and Computational Investigation. Int. J. Environ. Anal. Chem. 2021, 1–26. DOI: 10.1080/03067319.2021.1897119.
  • Yeboah, M. L.; Zhou, S. Sand Mulch-Aided Ambient-Air Fabrication of Microporous Cocoa Waste Derived-Activated Carbon for Methylene Blue Adsorption. Int. J. Environ. Anal. Chem. 2021, 1–19. DOI: 10.1080/03067319.2021.2018577.
  • Sahebjamee, N.; Soltanieh, M.; Mousavi, S. M.; Heydarinasab, A. Preparation and Characterization of Porous Chitosan–Based Membrane with Enhanced Copper Ion Adsorption Performance. React. Funct. Polym. 2020, 154, 104681. DOI: 10.1016/j.reactfunctpolym.2020.104681.
  • Dubinin, M. The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Nonuniform Surfaces. Chem. Rev. 1960, 60, 235–241. DOI: 10.1021/cr60204a006.
  • Hu, Q.; Zhang, Z. Application of Dubinin–Radushkevich Isotherm Model at the Solid/Solution Interface: A Theoretical Analysis. J. Mol. Liq. 2019, 277, 646–648. DOI: 10.1016/j.molliq.2019.01.005.
  • Hameed, B. H.; Ahmad, A. A. Batch Adsorption of Methylene Blue from Aqueous Solution by Garlic Peel, an Agricultural Waste Biomass. J. Hazard Mater. 2009, 164, 870–875.
  • Lian, L.; Guo, L.; Wang, A. Use of CaCl2 Modified Bentonite for Removal of Congo Red Dye from Aqueous Solutions. Desalination 2009, 249, 797–801. DOI: 10.1016/j.desal.2009.02.064.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.