Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 10
252
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Citric, succinic, and vanillic acid-functionalized magnetic-cored dendrimer for methylene blue adsorption

, &
Pages 902-912 | Received 12 May 2022, Accepted 23 Sep 2022, Published online: 03 Oct 2022

References

  • Vigneshwaran, S.; Sirajudheen, P.; Karthikeyan, P.; Meenakshi, S. Fabrication of Sulfur-Doped Biochar Derived from Tapioca Peel Waste with Superior Adsorption Performance for the Removal of Malachite Green and Rhodamine B Dyes. Surf. Interfaces. 2021, 23, 100920. DOI: 10.1016/j.surfin.2020.100920.
  • Gadekar, M. R.; Ahammed, M. M. Use of Water Treatment Residuals for Colour Removal from Real Textile Dye Wastewater. Appl. Water Sci. 2020, 10, 1–8.
  • Özer, D.; Dursun, G.; Özer, A. Methylene Blue Adsorption from Aqueous Solution by Dehydrated Peanut Hull. J. Hazard Mater. 2007, 144, 171–179.
  • Yagub, M. T.; Sen, T. K.; Ang, H. Equilibrium, Kinetics, and Thermodynamics of Methylene Blue Adsorption by Pine Tree Leaves. Water Air Soil Pollut. 2012, 223, 5267–5282. DOI: 10.1007/s11270-012-1277-3.
  • Yilmaz, M.; Mengelizadeh, N.; Saloot, M. k.; shahbaksh, S.; Balarak, D. Facile Synthesis of Fe3O4/ZnO/GO Photocatalysts for Decolorization of Acid Blue 113 under Solar, Visible and UV Lights. Mater. Sci. Semicond. Process. 2022, 144, 106593. DOI: 10.1016/j.mssp.2022.106593.
  • Ong, S.; Lee, C.; Zainal, Z. Removal of Basic and Reactive Dyes Using Ethylenediamine Modified Rice Hull. Bioresour. Technol. 2007, 98, 2792–2799.
  • El Malah, T.; Nour, H. F.; Radwan, E. K.; Mageid, R. E. A.; Khattab, T. A.; Olson, M. A. A Bipyridinium-Based Polyhydrazone Adsorbent That Exhibits Ultrahigh Adsorption Capacity for the Anionic Azo Dye, Direct Blue 71. Chem. Eng. J. 2021, 409, 128195. DOI: 10.1016/j.cej.2020.128195.
  • Yao, Y.; Xu, F.; Chen, M.; Xu, Z.; Zhu, Z. Adsorption Behavior of Methylene Blue on Carbon Nanotubes. Bioresour. Technol. 2010, 101, 3040–3046.
  • Ghosh, D.; Bhattacharyya, K. G. Adsorption of Methylene Blue on Kaolinite. Appl. Clay Sci. 2002, 20, 295–300. DOI: 10.1016/S0169-1317(01)00081-3.
  • Hao, C.; Li, G.; Wang, G.; Chen, W.; Wang, S. Preparation of Acrylic Acid Modified Alkalized MXene Adsorbent and Study on Its Dye Adsorption Performance. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 632, 127730. DOI: 10.1016/j.colsurfa.2021.127730.
  • Ikram, M.; Inayat, T.; Haider, A.; Ul-Hamid, A.; Haider, J.; Nabgan, W.; Saeed, A.; Shahbaz, A.; Hayat, S.; Ul-Ain, K. Graphene Oxide-Doped MgO Nanostructures for Highly Efficient Dye Degradation and Bactericidal Action. Nanoscale Res. Lett. 2021, 16, 1–11.
  • Wang, P.; Pu, S.; Zhang, W.; Shi, L.; Zhang, D. Revisiting the Influence of Chemical Oxidation on the Adsorption Properties of Carbonaceous Materials with Different Structures: Non-Dispersible versus Dispersible Structure. Sep. Purif. Techonl. 2022, 286, 120516. DOI: 10.1016/j.seppur.2022.120516.
  • Xiang, J.; Wang, X.; Ding, M.; Tang, X.; Zhang, S.; Zhang, X.; Xie, Z. The Role of Lateral Size of MXene Nanosheets in Membrane Filtration of Dyeing Wastewater: Membrane Characteristic and Performance. Chemosphere. 2022, 294, 133728. DOI: 10.1016/j.chemosphere.2022.133728.
  • Kiayi, Z.; Lotfabad, T. B.; Heidarinasab, A.; Shahcheraghi, F. Microbial Degradation of Azo Dye Carmoisine in Aqueous Medium Using Saccharomyces cerevisiae ATCC 9763. J. Hazard Mater. 2019, 373, 608–619.
  • Samiyammal, P.; Kokila, A.; Pragasan, L. A.; Rajagopal, R.; Sathya, R.; Ragupathy, S.; Krishnakumar, M.; Minnam Reddy, V. R. Adsorption of Brilliant Green Dye onto Activated Carbon Prepared from Cashew Nut Shell by KOH Activation: Studies on Equilibrium Isotherm. Environ Res. 2022, 212, 113497.
  • Sherino, B.; Abdul Halim, S. N.; Manan, N. S. A.; Kamboh, M. A.; Rashidi Nodeh, H.; Afzal, S.; Bibi, N.; Mohamad, S. Synthesis of New Zn-Decorated Metal-Organic Frameworks for Enhanced Removal of Carcinogenic Textile Dye: Equilibrium and Kinetic Modeling Studies. J. Environ. Sci. Health A-Toxic/Hazard. Subst. Environ. Eng. 2021, 56, 1296–1305.
  • Gupta, K.; Yasa, S. R.; Khan, A.; Sharma, O. P.; Khatri, O. P. Charge-Driven Interaction for Adsorptive Removal of Organic Dyes Using Ionic Liquid-Modified Graphene Oxide. J. Colloid Interface Sci. 2022, 607, 1973–1985.
  • Subhan, F.; Aslam, S.; Yan, Z.; Yaseen, M.; Naeem, M.; Ikram, M.; Ali, A.; Bibi, S. Adsorption and Reusability Performance of Hierarchically Porous Silica (MMZ) for the Removal of MB Dye from Water. Inorg. Chem. Commun. 2022, 139, 109380. DOI: 10.1016/j.inoche.2022.109380.
  • Singh, N.; Yadav, S.; Mehta, S. K.; Dan, A. In Situ Incorporation of Magnetic Nanoparticles within the Carboxymethyl Cellulose Hydrogels Enables Dye Removal. J. Macromol. Sci. A-Pure Appl. Chem. 2022, 59, 271–284. DOI: 10.1080/10601325.2022.2026788.
  • Bao, S.; Tang, L.; Li, K.; Ning, P.; Peng, J.; Guo, H.; Zhu, T.; Liu, Y. Highly Selective Removal of Zn (II) Ion from Hot-Dip Galvanizing Pickling Waste with Amino-Functionalized Fe3O4@ SiO2 Magnetic Nano-Adsorbent. J. Colloid Interface Sci. 2016, 462, 235–242.
  • Wu, R.; Liu, J.-H.; Zhao, L.; Zhang, X.; Xie, J.; Yu, B.; Ma, X.; Yang, S.-T.; Wang, H.; Liu, Y. Hydrothermal Preparation of Magnetic Fe3O4@ C Nanoparticles for Dye Adsorption. J. Environ. Chem. Eng. 2014, 2, 907–913. DOI: 10.1016/j.jece.2014.02.005.
  • Amin, M. M.; Bina, B.; Majd, A. M. S.; Pourzamani, H. Benzene Removal by Nano Magnetic Particles under Continuous Condition from Aqueous Solutions. Front. Environ. Sci. Eng. 2014, 8, 345–356. DOI: 10.1007/s11783-013-0574-4.
  • Huang, J.; Su, P.; Zhou, L.; Yang, Y. Grafting l-Valine on Polyamidoamine Dendrimer-Modified Magnetic Microspheres for Enantioselective Adsorption of Dansyl Amino Acids. Colloid Surf. A-Physicochem. Eng. Asp. 2016, 490, 241–249. DOI: 10.1016/j.colsurfa.2015.11.058.
  • Zhu, W.; Zhang, Y.; Hou, C.; Pan, D.; He, J.; Zhu, H. Covalent Immobilization of Lipases on Monodisperse Magnetic Microspheres Modified with PAMAM-Dendrimer. J. Nanopart. Res. 2016, 18, 1–13.
  • Kim, H.-R.; Jang, J.-W.; Park, J.-W. Carboxymethyl Chitosan-Modified Magnetic-Cored Dendrimer as an Amphoteric Adsorbent. J. Hazard Mater. 2016, 317, 608–616.
  • Galangash, M.; Ghavidast, M.; Bozorgpanah, A. Z. Adsorption of Acid Red 114 and Reactive Black 5 in Aqueous Solutions on Dendrimer‐Conjugated Magnetic Nanoparticles. J. Chin. Chem. Soc. 2019, 66, 62–74. DOI: 10.1002/jccs.201800177.
  • Aliannejadi, S.; Hassani, A. H.; Panahi, H. A.; Borghei, S. M. Fabrication and Characterization of High-Branched Recyclable PAMAM Dendrimer Polymers on the Modified Magnetic Nanoparticles for Removing Naphthalene from Aqueous Solutions. Microchem. J. 2019, 145, 767–777. DOI: 10.1016/j.microc.2018.11.043.
  • Bechthold, I.; Bretz, K.; Kabasci, S.; Kopitzky, R.; Springer, A. Succinic Acid: A New Platform Chemical for Biobased Polymers from Renewable Resources. Chem. Eng. Technol. 2008, 31, 647–654. DOI: 10.1002/ceat.200800063.
  • Angumeenal, A.; Venkappayya, D. An Overview of Citric Acid Production. LWT - Food Sci. Technol. 2013, 50, 367–370. DOI: 10.1016/j.lwt.2012.05.016.
  • Vahdati Mashhadian, N.; Tehranifar, A.; Bayat, H.; Selahvarzi, Y. Salicylic and Citric Acid Treatments Improve the Vase Life of Cut Chrysanthemum Flowers. Agric. Sci. Technol. 2012, 14, 879–887.
  • Kim, H.-K.; Park, J.-W. Agglomeration of 10 nm Amine-Functionalized Nano-Magnetite Does Not Hinder Its Efficiency as an Environmental Adsorbent. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2019, 54, 648–656.
  • Kim, K.-J.; Park, J.-W. Stability and Reusability of Amine-Functionalized Magnetic-Cored Dendrimer for Heavy Metal Adsorption. J. Mater. Sci. 2017, 52, 843–857. DOI: 10.1007/s10853-016-0380-z.
  • Jung, J.-J.; Jang, J.-W.; Park, J.-W. Effect of Generation Growth on Photocatalytic Activity of Nano TiO2-Magnetic Cored Dendrimers. J. Ind. Eng. Chem. 2016, 44, 52–59. DOI: 10.1016/j.jiec.2016.08.007.
  • Zhang, H.-J.; Zhao, X.; Chen, L.-J.; Yang, C.-X.; Yan, X.-P. Dendrimer Grafted Persistent Luminescent Nanoplatform for Aptamer Guided Tumor Imaging and Acid-Responsive Drug Delivery. Talanta. 2020, 219, 121209. DOI: 10.1016/j.talanta.2020.121209.
  • Cao, J.; Ge, R.; Zhang, M.; Xia, J.; Han, S.; Lu, W.; Liang, Y.; Zhang, T.; Sun, Y. A Triple Modality BSA-Coated Dendritic Nanoplatform for NIR Imaging, Enhanced Tumor Penetration and Anticancer Therapy. Nanoscale. 2018, 10, 9021–9037. DOI: 10.1039/c7nr09552j.
  • Zafar, A.; Schjødt-Thomsen, J.; Sodhi, R.; De Kubber, D. 2011 The Use of XPS to Investigate the Ageing Mechanism of the Phenol-Urea-Formaldehyde (PUF) Binder Coated Mineral Fibers. Proceedings of the 18th International Conference on Composite Materials, ICC Jeju, Korea.
  • Wang, D.; Hu, Y.; Zhao, J.; Zeng, L.; Tao, X.; Chen, W. Holey Reduced Graphene Oxide Nanosheets for High Performance Room Temperature Gas Sensing. J. Mater. Chem. A. 2014, 2, 17415–17420. DOI: 10.1039/C4TA03740E.
  • Wu, Y.; Lin, Y.; Xu, J. Synthesis of Ag–Ho, Ag–Sm, Ag–Zn, Ag–Cu, Ag–Cs, Ag–Zr, Ag–Er, Ag–Y and Ag–Co Metal Organic Nanoparticles for UV-Vis-NIR Wide-Range Bio-Tissue Imaging. Photochem. Photobiol. Sci. 2019, 18, 1081–1091.
  • Gomez-Bolivar, J.; Mikheenko, I. P.; Orozco, R. L.; Sharma, S.; Banerjee, D.; Walker, M.; Hand, R. A.; Merroun, M. L.; Macaskie, L. E. Synthesis of Pd/Ru Bimetallic Nanoparticles by Escherichia coli and Potential as a Catalyst for Upgrading 5-Hydroxymethyl Furfural into Liquid Fuel Precursors. Front Microbiol. 2019, 10, 1276. DOI: 10.3389/fmicb.2019.01276.
  • Habibi, N. Preparation of Biocompatible Magnetite-Carboxymethyl Cellulose Nanocomposite: Characterization of Nanocomposite by FTIR, XRD, FESEM and TEM. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2014, 131, 55–58. DOI: 10.1016/j.saa.2014.04.039.
  • Srisuda, S.; Virote, B. Adsorption of Formaldehyde Vapor by Amine-Functionalized Mesoporous Silica Materials. J. Environ. Sci. (China). 2008, 20, 379–384.
  • Abatti, G. P.; Pires, A. T. N.; Spinelli, A.; Scharnagl, N.; da Conceição, T. F. Conversion Coating on Magnesium Alloy Sheet (AZ31) by Vanillic Acid Treatment: Preparation, Characterization and Corrosion Behavior. J. Alloys Compd. 2018, 738, 224–232. DOI: 10.1016/j.jallcom.2017.12.115.
  • Kim, H.-R.; Boukhvalov, D. W.; Lee, S.-J.; Park, J.-W. Computational Calculation Identified Optimal Binding Sites in Nano-Sized Magnetic-Cored Dendrimer. Chemosphere. 2018, 210, 287–295. DOI: 10.1016/j.chemosphere.2018.06.174.
  • Thuy, N. T.; Minh, D. L. Size Effect on the Structural and Magnetic Properties of Nanosized Perovskite LaFeO3 Prepared by Different Methods. Adv. Mater. Sci. Eng. 2012, 2012, 1–6. DOI: 10.1155/2012/380306.
  • Li, X.; Tian, L.; Ali, Z.; Wang, W.; Zhang, Q. Design of Flexible Dendrimer-Grafted Flower-like Magnetic Microcarriers for Penicillin G Acylase Immobilization. J. Mater. Sci. 2018, 53, 937–947. DOI: 10.1007/s10853-017-1581-9.
  • Tang, H.; Pu, Z.; Huang, X.; Wei, J.; Liu, X.; Lin, Z. Novel Blue-Emitting Carboxyl-Functionalized Poly (Arylene Ether Nitrile)s with Excellent Thermal and Mechanical Properties. Polym. Chem. 2014, 5, 3673–3679. DOI: 10.1039/c3py01782f.
  • Bean, C.; Livingston, u Superparamagnetism. J. Appl. Phys. 1959, 30, S120–S129. DOI: 10.1063/1.2185850.
  • Sezer, N.; Arı, İ.; Biçer, Y.; Koç, M. Superparamagnetic Nanoarchitectures: Multimodal Functionalities and Applications. J. Magn. Magn. Mater. 2021, 538, 168300. DOI: 10.1016/j.jmmm.2021.168300.
  • Naeimi, H.; Ansarian, Z. Effective Preparation of Amine-Functionalized Nano Magnetite as a Precursor of Novel Solid Acid Catalyst for One-Pot Synthesis of Xanthenes under Solvent-Free Conditions. J. Taiwan Inst. Chem. Eng. 2018, 85, 265–272. DOI: 10.1016/j.jtice.2018.01.047.
  • Salazar-Rabago, J. J.; Leyva-Ramos, R.; Rivera-Utrilla, J.; Ocampo-Perez, R.; Cerino-Cordova, F. J. Biosorption Mechanism of Methylene Blue from Aqueous Solution onto White Pine (Pinus Durangensis) Sawdust: Effect of Operating Conditions. Sustain. Environ. Res. 2017, 27, 32–40. DOI: 10.1016/j.serj.2016.11.009.
  • Song, X.; Niu, Y.; Zhang, P.; Zhang, C.; Zhang, Z.; Zhu, Y.; Qu, R. Removal of Co (II) from Fuel Ethanol by Silica-Gel Supported PAMAM Dendrimers: Combined Experimental and Theoretical Study. Fuel. 2017, 199, 91–101. DOI: 10.1016/j.fuel.2017.02.076.
  • Anbia, M.; Kargosha, K.; Khoshbooei, S. Heavy Metal Ions Removal from Aqueous Media by Modified Magnetic Mesoporous Silica MCM-48. Chem. Eng. Res. Des. 2015, 93, 779–788. DOI: 10.1016/j.cherd.2014.07.018.
  • Al-Musawi, T. J.; Mengelizadeh, N.; Al Rawi, O.; Balarak, D. Capacity and Modeling of Acid Blue 113 Dye Adsorption onto Chitosan Magnetized by Fe2O3 Nanoparticles. J. Polym. Environ. 2022, 30, 344–359. DOI: 10.1007/s10924-021-02200-8.
  • Lee, S.-J.; Han, Y.-L.; Park, S. J.; Park, J.-W. Optimal Generation Number in Magnetic-Cored Dendrimers as Pb (II) and Cd (II) Adsorbents. Environ. Technol. 2020, 41, 3412–3419.
  • Shi, Y.; Song, G.; Li, A.; Wang, J.; Wang, H.; Sun, Y.; Ding, G. Graphene Oxide-Chitosan Composite Aerogel for Adsorption of Methyl Orange and Methylene Blue: Effect of pH in Single and Binary Systems. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 641, 128595. DOI: 10.1016/j.colsurfa.2022.128595.
  • Ghosh, I.; Kar, S.; Chatterjee, T.; Bar, N.; Das, S. K. Removal of Methylene Blue from Aqueous Solution Using Lathyrus Sativus Husk: Adsorption Study, MPR and ANN Modelling. Process Saf. Environ. Protect. 2021, 149, 345–361. DOI: 10.1016/j.psep.2020.11.003.
  • Salah omer, A.; A.El Naeem, G.; Abd-Elhamid, A.I.; O.M. Farahat, O.; A. El-Bardan, A.; M.A. Soliman, H.; Nayl, A.A. Adsorption of crystal violet and methylene blue dyes using a cellulose-based adsorbent from sugercane bagasse: characterization, kinetic and isotherm studies. J. Mater. Res. Technol. 2022, 19, 3241–3254. DOI: 10.1016/j.jmrt.2022.06.045.
  • Xue, H.; Wang, X.; Xu, Q.; Dhaouadi, F.; Sellaoui, L.; Seliem, M. K.; Ben Lamine, A.; Belmabrouk, H.; Bajahzar, A.; Bonilla-Petriciolet, A.; et al. Adsorption of Methylene Blue from Aqueous Solution on Activated Carbons and Composite Prepared from an Agricultural Waste Biomass: A Comparative Study by Experimental and Advanced Modeling Analysis. Chem. Eng. J. 2022, 430, 132801. DOI: 10.1016/j.cej.2021.132801.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.