Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 11
227
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Use of activated carbon and camphor carbon as cathode and clay cup as proton exchange membrane in a microbial fuel cell for the bioenergy production from crude glycerol biodegradation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 947-957 | Received 26 May 2022, Accepted 29 Sep 2022, Published online: 17 Oct 2022

References

  • Iannaci, A.; Ingle, S.; Domínguez, C.; Longhi, M.; Merdrignac-Conanec, O.; Ababou-Girard, S.; Barrière, F.; Colavita, P. E. Nanoscaffold Effects on the Performance of Air-Cathodes for Microbial Fuel Cells: Sustainable Fe/N-Carbon Electrocatalysts for the Oxygen Reduction Reaction under Neutral pH Conditions. Bioelectrochemistry 2021, 142, 107937. DOI: 10.1016/j.bioelechem.2021.107937.
  • Obileke, K.; Onyeaka, H.; Meyer, E. L.; Nwokolo, N. Microbial Fuel Cells, a Renewable Energy Technology for Bio-Electricity Generation: A Mini-Review. Electrochem. Commun. 2021, 125, 107003. DOI: 10.1016/j.elecom.2021.107003.2.
  • Xu, X.; Zhao, Q.; Wu, M.; Ding, J.; Zhang, W. Biodegradation of Organic Matter and Anodic Microbial Communities Analysis in Sediment Microbial Fuel Cells with/without Fe(III) Oxide Addition. Bioresour. Technol. 2017, 225, 402–408. DOI: 10.1016/j.biortech.2016.11.126.
  • Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial Fuel Cells: From Fundamentals to Applications. A Review. J. Power Sources 2017, 356, 225–244. DOI: 10.1016/j.jpowsour.2017.03.109.
  • Palanisamy, G.; Jung, H. Y.; Sadhasivam, T.; Kurkuri, M. D.; Kim, S. C.; Roh, S. H. A Comprehensive Review on Microbial Fuel Cell Technologies: Processes, Utilization, and Advanced Developments in Electrodes and Membranes. J. Clean. Prod. 2019, 221, 598–621. DOI: 10.1016/j.jclepro.2019.02.172.
  • Xu, Z.; Chen, S.; Guo, S.; Wan, D.; Xu, H.; Yan, W.; Jin, X.; Feng, J. New Insights in Light-Assisted Microbial Fuel Cells for Wastewater Treatment and Power Generation: A Win-Win Cooperation. J. Power Sources 2021, 501, 230000. DOI: 10.1016/j.jpowsour.2021.230000.
  • Gajda, I.; Obata, O.; Salar-Garcia, J. M.; Greenman, J.; Ieropoulos, I. A. Long-Term Bio-Power of Ceramic Microbial Fuel Cells in Individual and Stacked Configurations. Bioelectrochemistry 2020, 133, 107459. DOI: 10.1016/j.bioelechem.2020.107459.
  • Ge, Z.; He, Z. Long-Term Performance of a 200 Liter Modularized Microbial Fuel Cell System Treating Municipal Wastewater: Treatment, Energy, and Cost. Environ. Sci.: Water Res. Technol. 2016, 2, 274–281. DOI: 10.1039/C6EW00020G.
  • Chakraborty, I.; Das, S.; Dubey, B. K.; Ghangrekar, M. M. Novel Low Cost Proton Exchange Membrane Made from Sulphonated Biochar for Application in Microbial Fuel Cells. Mater. Chem. Phys. 2020, 239, 122025. DOI: 10.1016/j.matchemphys.2019.122025.
  • Rodríguez, J.; Mais, L.; Campana, R.; Piroddi, L.; Mascia, M.; Gurauskis, J.; Vacca, A.; Palmas, S. Comprehensive Characterization of a Cost-Effective Microbial Fuel Cell with Pt-Free Catalyst Cathode and Slip-Casted Ceramic Membrane. Int. J. Hydrogen Energy 2021, 46, 26205–26223. DOI: 10.1016/j.ijhydene.2021.01.066.
  • Watson, V. J.; Delgado, C. N.; Logan, B. E. Influence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction and Microbial Fuel Cell Performance. Environ. Sci. Technol. 2013, 47, 6704–6710. DOI: 10.1021/es401722j.
  • Chandrasekhar, K. Chapter 3.5 - Effective and Nonprecious Cathode Catalysts for Oxygen Reduction Reaction in Microbial Fuel Cells. In Biomass, Biofuels and Biochemicals, Microbial Electrochemical Technology. Venkata Mohan, S., Varjani, S., Pandey A., Eds. Elsevier: Netherlands, 2019; pp. 485–501.
  • Qiu, S.; Guo, Z.; Naz, F.; Yang, Z.; Yu, C. An Overview in the Development of Cathode Materials for the Improvement in Power Generation of Microbial Fuel Cells. Bioelectrochemistry 2021, 141, 107834. DOI: 10.1016/j.bioelechem.2021.107834.
  • Cheng, S.; Wu, J. Air-Cathode Preparation with Activated Carbon as Catalyst, PTFE as Binder and Nickel Foam as Current Collector for Microbial Fuel Cells. Bioelectrochemistry 2013, 92, 22–26. DOI: 10.1016/j.bioelechem.2013.03.001.
  • Li, X.; Hu, B.; Suib, S.; Lei, Y.; Li, B. Manganese Dioxide as a New Cathode Catalyst in Microbial Fuel Cells. J. Power Sources 2010, 195, 2586–2591. DOI: 10.1016/j.jpowsour.2009.10.084.
  • Zhao, F.; Harnisch, F.; Schröder, U.; Scholz, F.; Bogdanoff, F. P.; Herrmann, I. Application of Pyrolysed Iron (II) Phthalocyanine and CoTMPP Based Oxygen Reduction Catalysts as Cathode Materials in Microbial Fuel Cells. Electrochem. Commun. 2005, 7, 1405–1410. DOI: 10.1016/j.elecom.2005.09.032.
  • Cheng, S.; Liu, H.; Logan, B. Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells. Environ. Sci. Technol. 2006, 40, 364–369. DOI: 10.1021/es0512071.
  • Dong, H.; Yu, H.; Wang, X.; Zhou, O.; Feng, J. A Novel Structure of Scalable Air-Cathode without Nafion and Pt by Rolling Activated Carbon and PTFE as Catalyst Layer in Microbial Fuel Cells. Water Res. 2012, 46, 5777–5787. DOI: 10.1016/j.watres.2012.08.005.
  • Dong, H.; Yu, H.; Yu, H.; Gao, N.; Wang, X. Enhanced Performance of Activated Carbon-Polytetrafluoroethylene Air-Cathode by Avoidance of Sintering on Catalyst Layer in Microbial Fuel Cells. J. Power Sources 2013, 232, 132–138. DOI: 10.1016/j.jpowsour.2013.01.036.
  • Santoro, C.; Artyushkova, K.; Babanova, S.; Atanassov, P.; Ieropoulos, I.; Grattieri, M.; Cristiani, P.; Trasatti, S.; Li, B.; Schuler, A. J. Parameters Characterization and Optimization of Activated Carbon (AC) Cathodes for Microbial Fuel Cell Application. Bioresour. Technol. 2014, 163, 54–63. DOI: 10.1016/j.biortech.2014.03.091.
  • Zhang, F.; Cheng, S.; Pant, D.; Van Bogaert, G.; Logan, B. E. Power Generation Using an Activated Carbon and Metal Mesh Cathode in a Microbial Fuel Cell. Electrochem. Commun. 2009, 11, 2177–2179. DOI: 10.1016/j.elecom.2009.09.024.
  • Wang, Z. J.; Cao, C. L.; Zheng, Y.; Chen, S. L.; Zhao, F. Abiotic Oxygen Reduction Reaction Catalysts Used in Microbial Fuel Cells. ChemElectroChem 2014, 1, 1813–1821. DOI: 10.1002/celc.201402093.
  • Sawant, S. Y.; Han, T. H.; Cho, M. H. Metal-Free Carbon-Based Materials: Promising Electrocatalysts for Oxygen Reduction Reaction in Microbial Fuel Cells. IJMS 2016, 18, 25. DOI: 10.3390/ijms18010025.
  • Reyes, R. J. L.; Kumar, K. S.; Solorza Feria, O. Synthesis and Functionalization of Green Carbon as a Pt Catalyst Support for the Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2015, 40, 17253–17263. DOI: 10.1016/j.ijhydene.2015.07.019.
  • Kamaraj, S. K.; Reyes Rodríguez, J. L.; Solorza Feria, O. Negro de Humo de Hollin de Alcanfor Como Soporte de Catalizadores Para la Generacion de Energia. 2015, MX/a/2015/007202.
  • Sharon, M.; Hsu, W. K.; Kroto, H. W.; Walton, D. R. M.; Kawahara, A.; Ishihara, T.; Takita, Y. Camphor-Based Carbon Nanotubes as an Anode in Lithium Secondary Batteries. J. Power Sources 2002, 104, 148–153. DOI: 10.1016/S0378-7753(01)00872-2.
  • Wulan, P. P. D. K.; Fathony, A.; Ulfa, A. S. Utilization of Camphor as an Alternative Carbon Source for the Synthesis of Carbon Nanotubes Using Floating Catalyst. J. Phys.: Conf. Ser. 2019, 1349, 012059. DOI: 10.1088/1742-6596/1349/1/012059.
  • Du, Z.; Li, H.; Gu, T. A State of the Art Review on Microbial Fuel Cells: A Promising Technology for Wastewater Treatment and Bioenergy. Biotechnol. Adv. 2007, 25, 464–482. DOI: 10.1016/j.biotechadv.2007.05.004.
  • Min, B.; Cheng, S.; Logan, B. E. Electricity Generation Using Membrane and Salt Bridge Microbial Fuel Cells. Water Res. 2005, 39, 1675–1686. DOI: 10.1016/j.watres.2005.02.002.
  • Pant, D.; Bogaert, G. V.; De Smet, M.; Diels, L.; Vanbroekhoven, K. Use of Novel Permeable Membrane and Air Cathodes in Acetate Microbial Fuel Cells. Electrochim. Acta 2010, 55, 7710–7716. DOI: 10.1016/j.electacta.2009.11.086.
  • Zhuang, L.; Zhou, S.; Wang, Y.; Liu, C.; Geng, S. Membrane-Less Cloth Cathode Assembly (CCA) for Scalable Microbial Fuel Cells. Biosens. Bioelectron. 2009, 24, 3652–3656. DOI: 10.1016/j.bios.2009.05.032.
  • Zuo, Y.; Cheng, S.; Call, D.; Logan, B. E. Tubular Membrane Cathodes for Scalable Power Generation in Microbial Fuel Cells. Environ. Sci. Technol. 2007, 41, 3347–3353. DOI: 10.1021/es0627601.
  • Rabaey, K.; Boon, N.; Siciliano, S. D.; Verhaege, M.; Verstraete, W. Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer. Appl. Environ. Microbiol. 2004, 70, 5373–5382. DOI: 10.1128/AEM.70.9.5373-5382.2004.
  • Winfield, J.; Chambers, L. D.; Rossiter, J.; Ieropoulos, I. Comparing the Short- and Long-Term Stability of Biodegradable, Ceramic and Cation Exchange Membranes in Microbial Fuel Cells. Bioresour. Technol. 2013, 148, 480–486. DOI: 10.1016/j.biortech.2013.08.163.
  • Santoro, C.; Artyushkova, K.; Gajda, I.; Babanova, S.; Serov, A.; Atanassov, P.; Greenman, J.; Colombo, A.; Trasatti, S.; Ieropoulos, I.; Cristiani, P. Cathode Materials for Ceramic Based Microbial Fuel Cells (MFCs). Int. J. Hydrogen Energy 2015, 40, 14706–14715. DOI: 10.1016/j.ijhydene.2015.07.054.
  • Linkov, V. M.; Belyakov, V. N. Novel Ceramic Membranes for Electrodialysis. Sep. Purif. Technol. 2001, 25, 57–63. DOI: 10.1016/S1383-5866(01)00090-9.
  • Abbasi, M.; Mirfendereski, M.; Nikbakht, M.; Golshenas, M.; Mohammadi, T. Performance Study of Mullite and Mullite-Alumina Ceramic MF Membranes for Oily Wastewaters Treatment. Desalination 2010, 259, 169–178. DOI: 10.1016/j.desal.2010.04.013.
  • Winfield, J.; Gajda, I.; Greenman, J.; Ieropoulos, I. Ieropoulos, I. A Review into the Use of Ceramics in Microbial Fuel Cells. Bioresour. Technol. 2016, 215, 296–303. DOI: 10.1016/j.biortech.2016.03.135.
  • Hil Me, M. F.; Abu Bakar, M. H. Tubular Ceramic Performance as Separator for Microbial Fuel Cell: A Review. Int. J. Hydrogen Energy 2020, 45, 22340–22348. DOI: 10.1016/j.ijhydene.2019.08.115.
  • Badia Fabregat, M.; Rago, L.; Baeza, J. A.; Guisasola, A. Hydrogen Production from Crude Glycerol in an Alkaline Microbial Electrolysis Cell. Int. J. Hydrogen Energy 2019, 44, 17204–17213. DOI: 10.1016/j.ijhydene.2019.03.193.
  • Silalertruksa, T.; Bonnet, S.; Gheewala, S. H. Life Cycle Costing and Externalities of Palm Oil Biodiesel in Thailand. J. Clean. Prod. 2012, 28, 225–232. [Database] DOI: 10.1016/j.jclepro.2011.07.022.
  • Chookaew, T.; Poonsuk, P.; Zhiyong, J. R. Two-Stage Conversion of Crude Glycerol to Energy Using Dark Fermentation Linked with Microbial Fuel Cell or Microbial Electrolysis Cell. N. Biotechnol. 2014, 31, 179–184. DOI: 10.1016/j.nbt.2013.12.004.
  • Qing, Y.; Lu, H.; Liu, Y.; Liu, C.; Liang, B.; Jiang, W. Production of Glycerol Carbonate Using Crude Glycerol from Biodiesel Production with DBU as a Catalyst. Chin. J. Chem. Eng. 2018, 26, 1912–1919. DOI: 10.1016/j.cjche.2018.01.010.
  • Teera, C.; O-Thong, S.; Prasertsan, P. Fermentative Production of Hydrogen and Soluble Metabolites from Crude Glycerol of Biodiesel Plant by the Newly Isolated Thermotolerant Klebsiella pneumoniae TR17. Int. J. Hydrogen Energy 2012, 37, 13314–13322. DOI: 10.1016/j.ijhydene.2012.06.022.
  • Nasir, N. F.; Mirus, M. F.; Ismail, M. Purification of Crude Glycerol from Transesterification Reaction of Palm Oil Using Direct Method and Multistep Method. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 243, 012015. DOI: 10.1088/1757-899X/243/1/012015.
  • Nimje, V. R.; Chen, C. Y.; Chen, C. C.; Chen, H. R.; Tseng, M. J.; Jean, J. S.; Chang, Y. F. Glycerol Degradation in Single-Chamber Microbial Fuel Cells. Bioresour. Technol. 2011, 102, 2629–2634. DOI: 10.1016/j.biortech.2010.10.062.
  • Rodrigues, C. V.; Santana, K. O.; Nespeca, M. G.; de Oliveira, J. E.; Maintinguer, S. I. Crude Glycerol by Transesterification Process from Used Cooking Oils: Characterization and Potentialities on Hydrogen Bioproduction. Int. J. Hydrogen Energy 2016, 41, 14641–14651. DOI: 10.1016/j.ijhydene.2016.06.209.
  • Mangayil, R.; Karp, M.; Santala, V. Bioconversion of Crude Glycerol from Biodiesel Production to Hydrogen. Int. J. Hydrogen Energy 2012, 37, 12198–12204. DOI: 10.1016/j.ijhydene.2012.06.010.
  • Sahu, O. Sustainable and Clean Treatment of Industrial Wastewater with Microbial Fuel Cell. Results Eng. 2019, 4, 100053–100057. DOI: 10.1016/j.rineng.2019.100053.
  • Kumar, R.; Singh, L.; Zularisam, A. W. Exoelectrogens: recent Advances in Molecular Drivers Involved in Extracellular Electron Transfer and Strategies Used to Improve It for Microbial Fuel Cell Applications. Renew. Sustain. Energy. Rev. 2016, 56, 1322–1336. DOI: 10.1016/j.rser.2015.12.029.
  • Ávila Vázquez, V.; Díaz Estrada, R. A.; Aguilera Flores, M. M.; Escamilla Alvarado, C.; Correa Aguado, H. C. Transesterification of Non-Edible Castor Oil (Ricinus communis L.) from Mexico for Biodiesel Production: A Physicochemical Characterization. Biofuels 2020, 11, 1–10. DOI: 10.1080/17597269.2020.1787700.
  • Ramanathan, A.; Meera Sheriffa Begum, K. M.; Olimpio Pereira, A.; Cohen, C. Chapter 7 - Transesterification Process of Biodiesel Production from Nonedible Vegetable Oil Sources Using Catalysts from Waste Sources. In A Thermo-Economic Approach to Energy from Waste, Ramanathan, A., Sheriffa Begum K. M. M., Olimpio Pereira, A., Cohen C., Eds., Elsevier: Netherlands 2022; pp. 171–193.
  • Kamaraj, S. K.; Esqueda Rivera, A.; Murugesan, S.; García Mena, J.; Maya, O.; Frausto Reyes, C.; Tapia Ramírez, J.; Silos Espino, H.; Caballero Briones, F. Electricity Generation from Nopal Biogas Effluent Using a Surface Modified Clay Cup (Cantarito) Microbial Fuel Cell. Heliyon 2019, 5, e01506. DOI: 10.1016/j.heliyon.2019.e01506.
  • Logan, B. E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial Fuel Cells: methodology and Technology. Environ. Sci. Technol. 2006, 40, 5181–5192. DOI: 10.1021/es0605016.
  • Luo, Y.; Zhang, R.; Liu, G.; Li, J.; Li, M.; Zhang, C. Electricity Generation from Indole and Microbial Community Analysis in the Microbial Fuel Cell. J. Hazard Mater. 2010, 176, 759–764. DOI: 10.1016/j.jhazmat.2009.11.100.
  • Cercado, B.; Chazaro-Ruiz, L. F.; Trejo, G.; Buitrón, G.; Razo-Flores, E. Characterization of Oxidized Carbon Foil as a Low-Cost Alternative to Carbon Felt-Based Electrodes in Bioelectrochemical Systems. J. Appl. Electrochem. 2016, 46, 217–227. DOI: 10.1007/s10800-015-0906-0.
  • González García, J.; Bonete, P.; Expósito, E.; Montiel, V.; Aldaz, A.; Torregrosa Maciá, R. Characterization of a Carbon Felt Electrode: Structural and Physical Properties. J. Mater. Chem. 1999, 9, 419–426. DOI: 10.1039/a805823g.
  • Min, B.; Kim, J. R.; Oh, S. E.; Regan, J.; Logan, B. E. Electricity Generation from Swine Wastewater Using Microbial Fuel Cells. Water Res. 2005, 39, 4961–4968. DOI: 10.1016/j.watres.2005.09.039.
  • Kim, J. R.; Min, B.; Logan, B. E. Evaluation of Procedures to Acclimate a Microbial Fuel Cell for Electricity Production. Appl. Microbiol. Biotechnol. 2005, 68, 23–30. DOI: 10.1007/s00253-004-1845-6.
  • Salar-Garcia, M. J.; Obata, O.; Kurt, H.; Chandran, K.; Greenman, J.; Ieropoulos, I. A. Impact of Inoculum Type on the Microbial Community and Power Performance of Urine-Fed Microbial Fuel Cells. Microorganisms 2020, 8, 1921. DOI: 10.3390/microorganisms8121921.
  • Greenman, J.; Gajda, I.; You, J.; Mendis, B. A.; Obata, O.; Pasternak, G.; Ieropoulos, I. Microbial Fuel Cells and Their Electrified Biofilms. Biofilm 2021, 3, 100057. DOI: 10.1016/j.bioflm.2021.100057.
  • Tremouli, A.; Antonopoulou, G.; Bebelis, S.; Lyberatos, G. Operation and Characterization of a Microbial Fuel Cell Fed with Pretreated Cheese Whey at Different Organic Loads. Bioresour. Technol. 2013, 131, 380–389. DOI: 10.1016/j.biortech.2012.12.173.
  • Logan, B. E. Exoelectrogenic Bacteria That Power Microbial Fuel Cells. Nat. Rev. Microbiol. 2009, 7, 375–381. DOI: 10.1038/nrmicro2113.
  • Guimarães Queiroz, A.; Linares, J. J. Glycerol Utilization in Microbial Fuel Cells: Conditioning Stage and Influence of the Glycerol Concentration. J. Electrochem. Soc. 2014, 161, F125–F132. DOI: 10.1149/2.068401jes.
  • Manohar, A. K.; Mansfeld, F. The Internal Resistance of a Microbial Fuel Cell and Its Dependence on Cell Design and Operating Conditions. Electrochim. Acta 2009, 54, 1664–1670. DOI: 10.1016/j.electacta.2008.06.047.
  • Ajayi, F. F.; Weigele, P. R. A Terracotta Bio-Battery. Bioresour. Technol. 2012, 116, 86–91. DOI: 10.1016/j.biortech.2012.04.019.
  • Yousefia, V.; Mohebbi-Kalhoria, D.; Samimia, A. Equivalent Electrical Circuit Modeling of Ceramic-Based Microbial Fuel Cells Using the Electrochemical Impedance Spectroscopy (EIS) Analysis. J. Renew. Energy Environ. 2019, 6, 21–28. DOI: 10.30501/jree.2019.95555.
  • Barsoukov, E.; Macdonald, J. R. Impedance Spectroscopy: Theory, Experiment, and Applications. John Wiley & Sons: New Jersey, USA, 2005.
  • Zhao, Y.; Ma, Y.; Li, T.; Dong, Z.; Wang, Y. Modification of Carbon Felt Anodes Using Double-Oxidant HNO3/H2O2 for Application in Microbial Fuel Cells. RSC Adv. 2018, 8, 2059–2064. DOI: 10.1039/c7ra12923h.
  • Li, S.; Ho, S. H.; Hua, T.; Zhou, Q.; Li, F.; Tang, J. Sustainable Biochar as an Electrocatalysts for the Oxygen Reduction Reaction in Microbial Fuel Cells. Green Energy Environ. 2021, 6, 644–659. DOI: 10.1016/j.gee.2020.11.010.
  • Jorcin, J. B.; Orazem, M. E.; Pébère, N.; Tribollet, B. CPE Analysis by Local Electrochemical Impedance Spectroscopy. Electrochim. Acta 2006, 51, 1473–1479. DOI: 10.1016/j.electacta.2005.02.128.
  • Rossi, R.; Pant, D.; Logan, B. E. Chronoamperometry and Linear Sweep Voltammetry Reveals the Adverse Impact of High Carbonate Buffer Concentrations on Anode Performance in Microbial Fuel Cells. J. Power Sources 2020, 476, 228715. DOI: 10.1016/j.jpowsour.2020.228715.
  • Zhang, B.; Wen, Z. H.; Ci, S. Q.; Mao, S.; Chen, J. H.; He, Z. Synthesizing Nitrogen-Doped Activated Carbon and Probing Its Active Sites for Oxygen Reduction Reaction in Microbial Fuel Cells. ACS Appl. Mater. Interfaces 2014, 6, 7464–7470. DOI: 10.1021/am5008547.
  • Yogesh, S.; Parnas, R.; Li, B. Bioenergy Production from Glycerol in Hydrogen Producing Bioreactors (HPBs) and Microbial Fuel Cells (MFCs). Int. J. Hydrogen Energy 2011, 36, 3853–3861. DOI: 10.1016/j.ijhydene.2010.12.040.
  • Raychaudhuri, A.; Narayan Sahoo, R.; Behera, M. Application of Clayware Ceramic Separator Modified with Silica in Microbial Fuel Cell for Bioelectricity Generation during Rice Mill Wastewater Treatment. Water Sci. Technol. 2021, 84, 66–76. DOI: 10.2166/wst.2021.213.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.