Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 11
101
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Atmospheric Hg(p) concentrations at various particles sizes before (2018–2019) and during (2019–2020 and 2020–2021) COVID-19 occurred periods in Taichung, Taiwan

Pages 970-976 | Received 04 Aug 2022, Accepted 27 Sep 2022, Published online: 28 Oct 2022

References

  • Galappaththi, H. K. A.; Suraweera, I. Risk of Mercury Exposure during Childhood: A Review of Sri Lankan Situation. Rev. Environ. Health 2020, 35, 3.
  • Henriques, M. C.; Loureiro, S.; Fardilha, M.; Herdeiro, M. T. Exposure to Mercury and Human Reproductive Health: A Systematic Review. Reprod. Toxicol. 2019, 85, 93–103.
  • Driscoll, C. T.; Mason, R. P.; Chan, H. M.; Jacob, D. J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47, 4967–4983.
  • Natasha, S. M.; Khalid, S.; Bibi, I.; Bundschuh, J.; Khan Niazi, N. A Critical Review of Mercury Speciation, Bioavailability, Toxicity and Detoxification in Soil-Plant Environment: Ecotoxicology and Health Risk Assessment. Sci. Total Environ. 2020, 71, 134749.
  • Obrist, D.; Kirk, J. L.; Zhang, L.; Sunderland, E. M.; Jiskra, M.; Selin, N. E. A Review of Global Environmental Mercury Processes in Response to Human and Natural Perturbations: Changes of Emissions, Climate, and Land Use. Ambio 2018, 47, 116–140.
  • Regnell, O.; Watras, C. J. Microbial Mercury Methylation in Aquatic Environments: A Critical Review of Published Field and Laboratory Studies. Environ. Sci. Technol. 2019, 53, 4–19.
  • World Health Organization. International Programme on Chemical Safety. Ten Chemicals of Major Public Health Concern, 2013.
  • Raj, D.; Maiti, S. K. Sources, Toxicity, and Remediation of Mercury: An Essence Review. Environ. Monit. Assess 2019, 191, 566. DOI: 10.1007/s10661-019-7743-2.
  • Zhao, L.; Xu, L.; Wu, X.; Zhao, G.; Jiao, L.; Chen, J.; Hong, Y.; Deng, J.; Chen, Y.; Yang, K.; et al. Characteristics and Sources of Mercury in Precipitation Collected at the Urban, Suburban and Rural Sites in a City of Southeast China. Atmos. Res. 2018, 211, 21–29. DOI: 10.1016/j.atmosres.2018.04.019.
  • Schroeder, W. H.; Munthe, J. Atmospheric Mercury - An Overview. Atmos. Environ. 1998, 32, 809–822. DOI: 10.1016/S1352-2310(97)00293-8.
  • Lin, C. J.; Pehkonen, S. O. The Chemistry of Atmospheric Mercury: A Review. Atmos. Environ. 1999, 33, 2067–2079.
  • Lindqvist, O.; Rodhe, H. Atmospheric Mercury - A Review. Tellus Ser. B Chem. Phys. Meteorol. 1985, 37, 136–156. DOI: 10.3402/tellusb.v37i3.15010.
  • Zhang, H.; Wu, S.; Leibensperger, E. M. Source-Receptor Relationships for Atmospheric Mercury Deposition in the Context of Global Change. Atmos. Environ. 2021, 254, 118349. DOI: 10.1016/j.atmosenv.2021.118349.
  • Chen, L.; Liang, S.; Liu, M.; Yi, Y.; Mi, Z.; Zhang, Y. Trans-Provincial Health Impacts of Atmospheric Mercury Emissions in China. Nat. Commun. 2019, 10, 1–12.
  • Giang, A.; Selin, N. E. Benefits of Mercury Controls for the United States. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 286–291.
  • Horowitz, H. M.; Jacob, D. J.; Zhang, Y.; Dibble, T. S.; Slemr, F.; Amos, H. M.; Schmidt, J. A.; Corbitt, E. S.; Marais, E. A.; Sunderland, E. M. A New Mechanism for Atmospheric Mercury Redox Chemistry: Implications for the Global Mercury Budget. Atmos. Chem. Phys. 2017, 17, 6353–6371. DOI: 10.5194/acp-17-6353-2017.
  • Liu, J. J.; Wang, L.; Zhu, Y.; Lin, C. J.; Jang, C.; Wang, S. X. Source Attribution for Mercury Deposition with an Updated Atmospheric Mercury Emission Inventory in the Pearl River Delta Region. China. Front. Environ. Sci. Eng. 2019, 14, 1–11.
  • United Nations Environment Programme (UNEP). Minamata Convention on Mercury; UNEP: Minamata, Japan, 2013.
  • Wu, Q.; Tang, Y.; Wang, L.; Wang, S.; Han, D.; Ouyang, D.; Jiang, Y.; Xu, P.; Xue, Z.; Hu, J. Impact of Emission Reductions and Meteorology Changes on Atmospheric Mercury Concentrations during the COVID-19 Lockdown. Sci. Total Environ. 2021, 750, 142323.
  • Gratz, L. E.; Keeler, G. J.; Marsik, F. J.; Barres, J. A.; Dvonch, J. T. Atmospheric Transport of Speciated Mercury across Southern Lake Michigan: Influence from Emission Sources in the Chicago/Gary Urban Area. Sci. Total Environ. 2013, 448, 84–95.
  • Li, J.; Sommar, J.; Wangberg, I.; Lindqvist, O.; Wei, S. Short-Time Variation of Mercury Speciation in the Urban of Göteborg during GÖTE-2005. Atmos. Environ. 2008, 42, 8382–8388. DOI: 10.1016/j.atmosenv.2008.08.007.
  • Siudek, P.; Frankowski, M.; Siepak, J. Atmospheric Particulate Mercury at the Urban and Forest Sites in Central Poland. Environ. Sci. Pollut. Res. 2016, 23, 2341–2352. DOI: 10.1007/s11356-015-5476-5.
  • Song, X.; Cheng, I.; Lu, J. Annual Atmospheric Mercury Species in Downtown Toronto. J. Environ. Monit. 2009, 11, 660–669. DOI: 10.1039/b815435j.
  • Nguyen, D. L.; Kim, J. Y.; Shim, S. G.; Ghim, Y. S.; Zhang, X. S. Shipboard and Ground Measurements of Atmospheric Particulate Mercury and Total Mercury in Precipitation over the Yellow Sea Region. Environ. Pollut. 2016, 219, 262–274. DOI: 10.1016/j.envpol.2016.10.020.
  • Han, D.; Zhang, J.; Hu, Z.; Ma, Y.; Duan, Y.; Han, Y.; Chen, X.; Zhou, Y.; Cheng, J.; Wang, W. Particulate Mercury in Ambient Air in Shanghai, China: Size-Specific Distribution, Gas–Particle Partitioning, and Association with Carbonaceous Composition. Environ. Pollut. 2018, 238, 543–553. DOI: 10.1016/j.envpol.2018.03.088.
  • Schleicher, N. J.; Schäfer, J.; Chen, Y.; Blanc, G.; Chen, Y.; Chai, F.; Cen, K.; Norra, S. Atmospheric Particulate Mercury in the Megacity Beijing: Efficiency of Mitigation Measures and Assessment of Health Effects. Atmos. Environ. 2016, 124, 396–403. DOI: 10.1016/j.atmosenv.2015.09.040.
  • Tang, Y.; Wang, S.; Wu, Q.; Liu, K.; Li, Z.; Zou, J.; Hou, D.; Wu, Y.; Duan, L. Measurement of Size-Fractionated Particulate-Bound Mercury in Beijing and Implications on Sources and Dry Deposition of Mercury. Sci. Total Environ. 2019, 675, 176–183. DOI: 10.1016/j.scitotenv.2019.04.245.
  • Yu, B.; Fu, X.; Yin, R.; Zhang, H.; Wang, X.; Lin, C. J.; Wu, C.; Zhang, Y.; He, N.; Fu, P.; et al. Isotopic Composition of Atmospheric Mercury in China: New Evidence for Sources and Transformation Processes in Air and in Vegetation. Environ. Sci. Technol. 2016, 50, 9262–9269.
  • Zhu, J.; Wang, T.; Talbot, R.; Mao, H.; Yang, X.; Fu, C.; Sun, J.; Zhuang, B.; Li, S.; Han, Y.; Xie, M. Characteristics of Atmospheric Mercury Deposition and Size-Fractionated Particulate Mercury in Urban Nanjing, China. Atmos. Chem. Phys. 2014, 14, 2233–2244. DOI: 10.5194/acp-14-2233-2014.
  • Sakata, M.; Marumoto, K. Formation of Atmospheric Particulate Mercury in the Tokyo Metropolitan Area. Atmos. Environ. 2002, 36, 239–246. DOI: 10.1016/S1352-2310(01)00432-0.
  • Fu, X.; Feng, X.; Qiu, G.; Shang, L.; Zhang, H. Speciated Atmospheric Mercury and Its Potential Source in Guiyang. China. Atmos. Environ. 2011, 45, 4205–4212. DOI: 10.1016/j.atmosenv.2011.05.012.
  • Dastoor, A.; Wilson, S. J.; Travnikov, O.; Ryjkov, A.; Angot, H.; Christensen, J. H.; Steenhuisen, F.; Muntean, M. Arctic Atmospheric Mercury: Sources and Changes. Sci. Total Environ. 2022, 839, 156213.
  • Shao, L.; Wang, Y.; Liu, X.; Liu, R.; Han, K.; Zhang, Y. Temporal Variation of Gaseous Elemental Mercury in a Northern Coastal City in China: Monsoon and COVID-19 Lockdown Effects. Atmos. Pollut. Res. 2022, 13, 101436.
  • Fang, G. C.; Kao, C. L.; Zhuang, Y. J.; Yang, C. J. Atmospheric Pollutants Sources, Health Risk Assessment Study at a Commercial, Urban and Traffic site. Environ. Forensics 2021, 36, 1–14. DOI: 10.1080/15275922.2021.1907815.
  • Fang, G. C.; Huang, W. J.; Chen, H. L.; Chang, M. C.; Chen, Y.; Huang, C. Y. Concentrations of Particulates and Metallic Elements in Slow Wind Average 1.5 m/s in Winter Season. Environ. Forensics 2017, 18, 188–196. DOI: 10.1080/15275922.2017.1340365.
  • Fang, G. C.; Tsai, K. H.; Huang, C. Y.; Ou Yang, K. P.; Xiao, Y. F.; Huang, W. C.; Zhuang, Y. J. Seasonal Variations of Ambient Air Mercury Species Nearby an Airport. Atmos. Res. 2018, 202, 96–104. DOI: 10.1016/j.atmosres.2017.11.008.
  • Choi, E. M.; Kim, S. H.; Holsen, T. M.; Yi, S. M. Total Gaseous Concentrations in Mercury in Seoul, Korea: Local Sources Compared to Long-Range Transport from China and Japan. Environ. Pollut. 2009, 157, 816–822.
  • Marty, M. A.; Siegel, D.; Mahmud, A.; Servin, A.; Yee, S.; Zuo, Y. P.; Collins, J. F.; Salmon, A. G.; Wang, A. A. Air Toxics Hot Spots Program. Risk Assessment Guidelines. Guidance Manual for Preparation of Health Risk Assessments; Air, Community, and Environmental Research Branch Office of Environmental Health Hazard Assessment California Environmental Protection Agency, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.