Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 12
94
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Interaction mechanism of benzophenone-type UV filters on bovine serum albumin: Insights from structure-affinity relationship

, , , &
Pages 1037-1046 | Received 22 Sep 2022, Accepted 28 Oct 2022, Published online: 23 Nov 2022

References

  • Cadena-Aizaga, M. I.; Montesdeoca-Esponda, S.; Torres-Padrón, M. E.; Sosa-Ferrera, Z.; Santana-Rodríguez, J. J. Organic UV Filters in Marine Environments: An Update of Analytical Methodologies, Occurrence and Distribution. Trends Environ. Anal. Chem. 2020, 25, e00079. DOI: 10.1016/j.teac.2019.e00079.
  • Scalia, S.; Mezzena, M. Photostabilization Effect of Quercetin on the UV Filter Combination, Butyl Methoxydibenzoylmethane-Octyl Methoxycinnamate. Photochem. Photobiol. 2010, 86, 273–278. DOI: 10.1111/j.1751-1097.2009.00655.x.
  • Wu, M. H.; Xie, D. G.; Xu, G.; Sun, R.; Xia, X. Y.; Liu, W. L.; Tang, L. Benzophenone-Type UV Filters in Surface Waters: An Assessment of Profiles and Ecological Risks in Shanghai, china. Ecotoxicol. Environ. Saf. 2017, 141, 235–241. DOI: 10.1016/j.ecoenv.2017.03.013.
  • Kurul, E.; Hekimoğlu, S. Skin Permeation of Two Different Benzophenone Derivatives from Various Vehicles. Int. J. Cosmet. Sci. 2001, 23, 211–218. DOI: 10.1046/j.1467-2494.2001.00089.x.
  • Song, S.; He, Y.; Huang, Y.; Huang, X.; Guo, Y.; Zhu, H.; Kannan, K.; Zhang, T. Occurrence and Transfer of Benzophenone-Type Ultraviolet Filters from the Pregnant Women to Fetuses. Sci. Total Environ. 2020, 726, 138503. DOI: 10.1016/j.scitotenv.2020.138503.
  • Kerdivel, G.; Guevel, R. L.; Habauzit, D.; Brion, F.; Ait-Aissa, S.; Pakdel, F. Estrogenic Potency of Benzophenone UV Filters in Breast Cancer Cells: Proliferative and Transcriptional Activity Substantiated by Docking Analysis. PLoS One. 2013, 8, e60567. DOI: 10.1371/journal.pone.0060567.
  • Valle-Sistac, J.; Molins-Delgado, D.; Díaz, M.; Ibáñez, L.; Barceló, D.; Díaz-Cruz, M. S. Determination of Parabens and Benzophenone-Type UV Filters in Human Placenta, First Description of the Existence of Benzyl Paraben and Benzophenone-4. Environ. Int. 2016, 88, 243–249. DOI: 10.1016/j.envint.2015.12.034.
  • Hu, L.; Tian, M.; Feng, W.; He, H.; Wang, Y.; Yang, L. Sensitive Detection of Benzophenone-Type Ultraviolet Filters in Plastic Food Packaging Materials by Sheathless Capillary Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry. J. Chromatogr. A. 2019, 1604, 460469. DOI: 10.1016/j.chroma.2019.460469.
  • Gago-Ferrero, P.; Mastroianni, N.; Díaz-Cruz, M. S.; Barceló, D. Fully Automated Determination of Nine Ultraviolet Filters and Transformation Products in Natural Waters and Wastewaters by on-Line Solid Phase Extraction-Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A. 2013, 1294, 106–116. DOI: 10.1016/j.chroma.2013.04.037.
  • Liu, H.; Sun, P.; Liu, H.; Yang, S.; Wang, L.; Wang, Z. Acute Toxicity of Benzophenone-Type UV Filters for Photobacterium Phosphoreum and Daphnia Magna: QSAR Analysis, Interspecies Relationship and Integrated Assessment. Chemosphere. 2015, 135, 182–188. DOI: 10.1016/j.chemosphere.2015.04.036.
  • Long, J.; Xia, W.; Li, J.; Zhou, Y.; Zhao, H.; Wu, C.; Liao, J.; Jiang, Y.; Li, C.; Li, Y.; et al. Maternal Urinary Benzophenones and Infant Birth Size: Identifying Critical Windows of Exposure. Chemosphere. 2019, 219, 655–661. DOI: 10.1016/j.chemosphere.2018.11.190.
  • Huang, Y. F.; Chang, J. P.; Chen, H. C.; Huang, Y. M. Simultaneous Trace Analysis of 10 Benzophenone-Type Ultraviolet Filters in Fish through Liquid Chromatography-Tandem Mass Spectrometry. Environ. Pollut. 2021, 286, 117306. DOI: 10.1016/j.envpol.2021.117306.
  • Mao, F.; He, Y.; Gin, K. Y. H. Antioxidant Responses in Cyanobacterium Microcystis aeruginosa Caused by Two Commonly Used UV Filters, Benzophenone-1 and Benzophenone-3, at Environmentally Relevant Concentrations. J. Hazard Mater. 2020, 396, 122587. DOI: 10.1016/j.jhazmat.2020.122587.
  • Liu, H.; Sun, P.; Liu, H.; Yang, S.; Wang, L.; Wang, Z. Hepatic Oxidative Stress Biomarker Responses in Freshwater Fish Carassius auratus Exposed to Four Benzophenone UV Filters. Ecotoxicol. Environ. Saf. 2015, 119, 116–122. DOI: 10.1016/j.ecoenv.2015.05.017.
  • Chiriac, F. L.; Pirvu, F.; Paun, I. Investigation of Endocrine Disruptor Pollutants and Their Metabolites along the Romanian Black Sea Coast: Occurrence, Distribution and Risk Assessment. Environ. Toxicol. Pharmacol. 2021, 86, 103673. DOI: 10.1016/j.etap.2021.103673.
  • Kawamura, Y.; Ogawa, Y.; Nishimura, T.; Kikuchi, Y.; Nishikawa, J.; Nishihara, T.; Tanamoto, K. Estrogenic Activities of UV Stabilizers Used in Food Contact Plastics and Benzophenone Derivatives Tested by the Yeast Two-Hybrid Assay. J. Health Sci. 2003, 49, 205–212. DOI: 10.1248/jhs.49.205.
  • Wang, J.; Pan, L.; Wu, S.; Lu, L.; Xu, Y.; Zhu, Y.; Guo, M.; Zhuang, S. Recent Advances on Endocrine Disrupting Effects of UV Filters. IJERPH. 2016, 13, 782. DOI: 10.3390/ijerph13080782.
  • Yu, Q.; Wei, D.; Liu, W.; Du, Y. Acute Toxicity Variation of Hydroxyl Benzophenone UV Filters during Photoinduction-Chlorination Disinfection Processes. J. Environ. Sci. (China). 2017, 54, 48–55. DOI: 10.1016/j.jes.2016.05.020.
  • Balázs, A.; Krifaton, C.; Orosz, I.; Szoboszlay, S.; Kovács, R.; Csenki, Z.; Urbányi, B.; Kriszt, B. Hormonal Activity, Cytotoxicity and Developmental Toxicity of UV Filters. Ecotoxicol. Environ. Saf. 2016, 131, 45–53. DOI: 10.1016/j.ecoenv.2016.04.037.
  • Zhang, F.; Zhang, J.; Tong, C.; Chen, Y.; Zhuang, S.; Liu, W. Molecular Interactions of Benzophenone UV Filters with Human Serum Albumin Revealed by Spectroscopic Techniques and Molecular Modeling. J. Hazard. Mater. 2013, 263, 618–626. DOI: 10.1016/j.jhazmat.2013.10.024.
  • Ao, J.; Gao, L.; Yuan, T.; Jiang, G. Interaction Mechanisms between Organic UV Filters and Bovine Serum Albumin as Determined by Comprehensive Spectroscopy Exploration and Molecular Docking. Chemosphere. 2015, 119, 590–600. DOI: 10.1016/j.chemosphere.2014.07.019.
  • Zhuang, S.; Wang, H.; Ding, K.; Wang, J.; Pan, L.; Lu, Y.; Liu, Q.; Zhang, C. Interactions of Benzotriazole UV Stabilizers with Human Serum Albumin: Atomic Insights Revealed by Biosensors, Spectroscopies and Molecular Dynamics Simulations. Chemosphere. 2016, 144, 1050–1059. DOI: 10.1016/j.chemosphere.2015.09.085.
  • Chen, H.; Zhu, C.; Chen, F.; Xu, J.; Jiang, X.; Wu, Z.; Ding, X.; Fan, G.; Shen, Y.; Ye, Y. Profiling the Interaction of Al(III)-GFLX Complex, a Potential Pollution Risk, with Bovine Serum Albumin. Food Chem. Toxicol. 2020, 136, 111058. DOI: 10.1016/j.fct.2019.111058.
  • Ahmad, M. I.; Potshangbam, A. M.; Javed, M.; Ahmad, M. Studies on Conformational Changes Induced by Binding of Pendimethalin with Human Serum Albumin. Chemosphere. 2020, 243, 125270. DOI: 10.1016/j.chemosphere.2019.125270.
  • Wu, S.; Wang, X.; Bao, Y.; Zhang, C.; Liu, H.; Li, Z.; Chen, M.; Wang, C.; Guo, Q.; Peng, X. Molecular Insight on the Binding of Monascin to Bovine Serum Albumin (BSA) and Its Effect on Antioxidant Characteristics of Monascin. Food Chem. 2020, 315, 126228. DOI: 10.1016/j.foodchem.2020.126228.
  • Zhang, L.; Liu, Y.; Hu, X.; Xu, M.; Wang, Y. Studies on Interactions of Pentagalloyl Glucose, Ellagic Acid and Gallic Acid with Bovine Serum Albumin: A Spectroscopic Analysis. Food Chem. 2020, 324, 126872. DOI: 10.1016/j.foodchem.2020.126872.
  • Zhang, J.; Wang, Z.; Xing, Y.; Hou, C.; Zhou, Q.; Sun, Y.; Sun, Y.; Xu, H.; Gao, J. Mechanism of the Interaction between Benthiavalicarb-Isopropyl and Human Serum Albumin. Spectrosc. Lett. 2020, 53, 360–371. DOI: 10.1080/00387010.2020.1756343.
  • Nagtilak, M.; Pawar, S.; Labade, S.; Khilare, C.; Sawant, S. Study of the Binding Interaction between Bovine Serum Albumin and Carbofuran Insecticide: Multispectroscopic and Molecular Docking Techniques. J. Mol. Struct. 2022, 1249, 131597. DOI: 10.1016/j.molstruc.2021.131597.
  • Pawar, S.; Joshi, R.; Ottoor, D. Spectroscopic and Molecular Docking Study to Understand the Binding Interaction of Rosiglitazone with Bovine Serum Albumin in Presence of Valsartan. J. Lumin. 2018, 197, 200–210. DOI: 10.1016/j.jlumin.2018.01.017.
  • Bai, J.; Ma, X.; Sun, X. Investigation on the Interaction of Food Colorant Sudan III with Bovine Serum Albumin Using Spectroscopic and Molecular Docking Methods. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng. 2020, 55, 669–676. DOI: 10.1080/10934529.2020.1729616.
  • Gałczyńska, K.; Ciepluch, K.; Kurdziel, K.; Biehl, R.; Arabski, M. Spectroscopic and Small-Angle X-Ray Scattering Analysis of Binding between Copper(II)–1-Allylimidazole Complex, a Potential anti-Tumor Agent, and Bovine Serum Albumin. Bioorg. Chem. 2021, 116, 105327. DOI: 10.1016/j.bioorg.2021.105327.
  • Fu, J. J.; Sun, C.; Tan, Z. F.; Zhang, G. Y.; Chen, G. B.; Song, L. Nanocomplexes of Curcumin and Glycated Bovine Serum Albumin: The Formation Mechanism and Effect of Glycation on Their Physicochemical Properties. Food Chem. 2022, 368, 130651. DOI: 10.1016/j.foodchem.2021.130651.
  • Sheikh-Jalali, H.; Mohseni-Shahri, F. S.; Moeinpour, F. Evaluation of Binding Properties of Bovine Serum Albumin and Pyrimidine Ligand: Spectroscopic and Molecular Docking Approach. J. Mol. Struct. 2022, 1252, 132222. DOI: 10.1016/j.molstruc.2021.132222.
  • Sun, Q.; Yang, H.; Tang, P.; Liu, J.; Wang, W.; Li, H. Interactions of Cinnamaldehyde and Its Metabolite Cinnamic Acid with Human Serum Albumin and Interference of Other Food Additives. Food Chem. 2018, 243, 74–81. DOI: 10.1016/j.foodchem.2017.09.109.
  • Wani, T. A.; Alsaif, N.; Alanazi, M. M.; Bakheit, A. H.; Zargar, S.; Bhat, M. A. A Potential Anticancer Dihydropyrimidine Derivative and Its Protein Binding Mechanism by Multispectroscopic, Molecular Docking and Molecular Dynamic Simulation along with Its in-Silico Toxicity and Metabolic Profile. Eur. J. Pharm. Sci. 2021, 158, 105686. DOI: 10.1016/j.ejps.2020.105686.
  • Zhu, C.; Liu, F.; Wei, Y.; Zhang, F.; Pan, T.; Ye, Y.; Shen, Y. Evaluating the Potential Risk by Probing the Site-Selective Binding of rutin-Pr(III) Complex to Human Serum Albumin. Food Chem. Toxicol. 2021, 148, 111927. DOI: 10.1016/j.fct.2020.111927.
  • Merckx, R.; Swift, T.; Rees, R.; Van Guyse, J. F. R.; Schoolaert, E.; De Clerck, K.; Ottevaere, H.; Thienpont, H.; Jerca, V. V.; Hoogenboom, R. Frster Resonance Energy Transfer in Fluorophore Labeled Poly(2-Ethyl-2-Oxazoline)s. J. Mater. Chem. C. 2020, 8, 14125–14137. DOI: 10.1039/D0TC02830D.
  • Gu, J.; Liu, L.; Zheng, S.; Yang, G.; He, Q.; Huang, X.; Guo, C. Investigation of the Binding Interactions between 17α-Ethinylestradiol with Bovine Serum Albumin by Multispectroscopy. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2020, 55, 1131–1140. DOI: 10.1080/10934529.2020.1776035.
  • Liu, F.; Zhang, Y.; Yu, Q.; Shen, Y.; Zheng, Z.; Cheng, J.; Zhang, W.; Ye, Y. Exploration of the Binding between Ellagic Acid, a Potentially Risky Food Additive, and Bovine Serum Albumin. Food Chem. Toxicol. 2019, 134, 110867. DOI: 10.1016/j.fct.2019.110867.
  • Hashemnia, S.; Zarei, H.; Mokhtari, Z.; Mokhtari, M. H. An Investigation of the Effect of PVP-Coated Silver Nanoparticles on the Interaction between Clonazepam and Bovine Serum Albumin Based on Molecular Dynamics Simulations and Molecular Docking. J. Mol. Liq. 2021, 323, 114915. DOI: 10.1016/j.molliq.2020.114915.
  • Wang, W.; Gao, D.; Zheng, Q.; Zhao, X.; Na, R.; Wan, X.; Li, Q. X. Interactions of Isoorientin and Its Semi-Synthetic Analogs with Human Serum Albumin. Bioorg. Chem. 2021, 116, 105319. DOI: 10.1016/j.bioorg.2021.105319.
  • Abdelaziz, M. A.; Shaldam, M.; El-Domany, R. A.; Belal, F. Multi-Spectroscopic, Thermodynamic and Molecular Dynamic Simulation Studies for Investigation of Interaction of Dapagliflozin with Bovine Serum Albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 264, 120298. DOI: 10.1016/j.saa.2021.120298.
  • Bolel, P.; Mahapatra, N.; Halder, M. Optical Spectroscopic Exploration of Binding of Cochineal Red a with Two Homologous Serum Albumins. J. Agric. Food Chem. 2012, 60, 3727–3734. DOI: 10.1021/jf205219w.
  • Wani, T. A.; Bakheit, A. H.; Al-Majed, A. A.; Altwaijry, N.; Baquaysh, A.; Aljuraisy, A.; Zargar, S. Binding and Drug Displacement Study of Colchicine and Bovine Serum Albumin in Presence of Azithromycin Using Multispectroscopic Techniques and Molecular Dynamic Simulation. J. Mol. Liq. 2021, 333, 115934. DOI: 10.1016/j.molliq.2021.115934.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.