Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 12
120
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Recent developments of magnetic nanoadsorbents for remediation of arsenic from aqueous stream

Pages 1058-1072 | Received 25 Mar 2022, Accepted 03 Nov 2022, Published online: 08 Dec 2022

References

  • Sharma, B.; Thakur, S.; Mamba, G.; Gupta, R. K.; Prateek; Gupta, V. K.; Thakur, V. K. Titania Modified Gum Tragacanth Based Hydrogel Nanocomposite for Water Remediation. J. Environ. Chem. Eng. 2021, 9, 104608. DOI: 10.1016/j.jece.2020.104608.
  • Thakur, S.; Verma, A.; Raizada, P.; Gunduz, O.; Janas, D.; Alsanie, W. F.; Scarpa, F.; Thakur, V. K. Bentonite-Based Sodium Alginate/Dextrin Crosslinked Poly (Acrylic Acid) Hydrogel Nanohybrids for Facile Removal of Paraquat Herbicide from Aqueous Solutions. Chemosphere 2022, 291, 133002. DOI: 10.1016/J.CHEMOSPHERE.2021.133002.
  • Chaudhary, J.; Thakur, S.; Sharma, M.; Gupta, V. K.; Thakur, V. K. Development of Biodegradable Agar-Agar/Gelatin-Based Superabsorbent Hydrogel as an Efficient Moisture-Retaining Agent. Biomolecules 2020, 10, 939. DOI: 10.3390/biom10060939.
  • Sharma, B.; Thakur, S.; Trache, D.; Yazdani Nezhad, H.; Thakur, V. K. Microwave-Assisted Rapid Synthesis of Reduced Graphene Oxide-Based Gum Tragacanth Hydrogel Nanocomposite for Heavy Metal Ions Adsorption. Nanomater 2020, 10, 1616. DOI: 10.3390/nano10081616.
  • Thakur, S.; Verma, A.; Kumar, V.; Yang, X. J.; Krishnamurthy, S.; Coulon, F.; Thakur, V. K. Cellulosic Biomass-Based Sustainable Hydrogels for Wastewater Remediation: Chemistry and Prospective. Fuel 2022, 309, 122114. DOI: 10.1016/j.fuel.2021.122114.
  • Magalhães, M. C. F. An Environmental Problem Limited by Solubility. Pure Appl. Chem. 2002, 74, 1843–1850. DOI: 10.1351/PAC200274101843/MACHINEREADABLECITATION/RIS.
  • Smedley, P. L.; Kinniburgh, D. G. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Appl. Geochem. 2002, 17, 517–568. DOI: 10.1016/S0883-2927(02)00018-5.
  • Siddiqui, S. I.; Naushad, M.; Chaudhry, S. A. Promising Prospects of Nanomaterials for Arsenic Water Remediation: A Comprehensive Review. Process Saf. Environ. Prot. 2019, 126, 60–97. DOI: 10.1016/j.psep.2019.03.037.
  • Brammer, H.; Ravenscroft, P. Arsenic in Groundwater: A Threat to Sustainable Agriculture in South and South-East Asia. Environ. Int. 2009, 35, 647–654. DOI: 10.1016/J.ENVINT.2008.10.004.
  • Sharma, A.; Mangla, D.; Shehnaz; Chaudhry, S. A. Recent Advances in Magnetic Composites as Adsorbents for Wastewater Remediation. J. Environ. Manage. 2022, 306, 114483. DOI: 10.1016/J.JENVMAN.2022.114483.
  • Lead in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality, 2003.
  • Shaji, E.; Santosh, M.; Sarath, K. V.; Prakash, P.; Deepchand, V.; Divya, B. V. Arsenic Contamination of Groundwater: A Global Synopsis with Focus on the Indian Peninsula. Geosci. Front. 2021, 12, 101079. DOI: 10.1016/j.gsf.2020.08.015.
  • Yang, M. H.; Zang, Y. S.; Huang, H.; Chen, K.; Li, B.; Sun, G. Y.; Zhao, X. W. Arsenic Trioxide Exerts Anti-Lung Cancer Activity by Inhibiting Angiogenesis. Curr. Cancer Drug Targets 2014, 14, 557–566. DOI: 10.2174/1568009614666140725090000.
  • Mukherjee, A.; Bhattacharya, P.; Shi, F.; Fryar, A. E.; Mukherjee, A. B.; Xie, Z. M.; Jacks, G.; Bundschuh, J. Chemical Evolution in the High Arsenic Groundwater of the Huhhot Basin (Inner Mongolia, PR China) and Its Difference from the Western Bengal Basin (India). Appl. Geochem. 2009, 24, 1835–1851. DOI: 10.1016/j.apgeochem.2009.06.005.
  • Mangla, D.; Annu; Sharma, A.; Ikram, S. Critical Review on Adsorptive Removal of Antibiotics: Present Situation, Challenges and Future Perspective. J. Hazard Mater. 2022, 425, 127946. DOI: 10.1016/J.JHAZMAT.2021.127946.
  • Thakur, S.; Chaudhary, J.; Singh, P.; Alsanie, W. F.; Grammatikos, S. A.; Thakur, V. K. Synthesis of Bio-Based Monomers and Polymers Using Microbes for a Sustainable Bioeconomy. Bioresour. Technol. 2022, 344, 126156. DOI: 10.1016/J.BIORTECH.2021.126156.
  • Siddiqui, S. I.; Chaudhry, S. A. Iron Oxide and Its Modified Forms as an Adsorbent for Arsenic Removal: A Comprehensive Recent Advancement. Process Saf. Environ. Prot. 2017, 111, 592–626. DOI: 10.1016/j.psep.2017.08.009.
  • Choudhry, A.; Sharma, A.; Khan, T. A.; Chaudhry, S. A. Flax Seeds Based Magnetic Hybrid Nanocomposite: An Advance and Sustainable Material for Water Cleansing. J. Water Process Eng. 2021, 42, 102150. DOI: 10.1016/j.jwpe.2021.102150.
  • Mehta, D.; Mazumdar, S.; Singh, S. K. Magnetic Adsorbents for the Treatment of Water/Wastewater—A Review. J. Water Process Eng. 2015, 7, 244–265. DOI: 10.1016/j.jwpe.2015.07.001.
  • Deliyanni, E. A.; Bakoyannakis, D. N.; Zouboulis, A. I.; Matis, K. A. Sorption of As(V) Ions by Akaganéite-Type Nanocrystals. Chemosphere 2003, 50, 155–163. DOI: 10.1016/S0045-6535(02)00351-X.
  • Deliyanni, E. A.; Nalbandian, L.; Matis, K. A. Adsorptive Removal of Arsenites by a Nanocrystalline Hybrid Surfactant–Akaganeite Sorbent. J. Colloid Interface Sci. 2006, 302, 458–466. DOI: 10.1016/J.JCIS.2006.07.007.
  • Adegoke, H. I.; Adekola, F. A.; Fatoki, O. S.; Ximba, B. J. A Comparative Study on Sorption of as (V) ions on Hematite, Goethite and Magnetite Nanoparticles. Nanotechnology 2014, 1, 184–187. https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ajTaRAYAAAAJ&cstart=20&pagesize=80&citation_for_view=ajTaRAYAAAAJ:IjCSPb-OGe4C (accessed October 10, 2022).
  • Zeng, H.; Zhai, L.; Zhang, J.; Li, D. As(V) Adsorption by a Novel Core-Shell Magnetic Nanoparticles Prepared with Iron-Containing Water Treatment Residuals. Sci. Total Environ. 2021, 753, 142002. DOI: 10.1016/J.SCITOTENV.2020.142002.
  • Tang, W.; Li, Q.; Gao, S.; Shang, J. K. Arsenic (III,V) Removal from Aqueous Solution by Ultrafine α-Fe2O3 Nanoparticles Synthesized from Solvent Thermal Method. J. Hazard Mater. 2011, 192, 131–138. DOI: 10.1016/J.JHAZMAT.2011.04.111.
  • Hu, J. S.; Zhong, L. S.; Song, W. G.; Wan, L. J. Synthesis of Hierarchically Structured Metal Oxides and Their Application in Heavy Metal Ion Removal. Adv. Mater. 2008, 20, 2977–2982. DOI: 10.1002/adma.200800623.
  • Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.; Wan, L. J. Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment. Adv. Mater. 2006, 18, 2426–2431. DOI: 10.1002/adma.200600504.
  • Lin, Y. F.; Chen, J. L. Synthesis of Mesoporous Maghemite (γ-Fe2O3) Nanostructures with Enhanced Arsenic Removal Efficiency. RSC Adv. 2013, 3, 15344–15349. DOI: 10.1039/c3ra41596a.
  • Hu, Q.; Liu, Y.; Gu, X.; Zhao, Y. Adsorption Behavior and Mechanism of Different Arsenic Species on Mesoporous MnFe2O4 Magnetic Nanoparticles. Chemosphere 2017, 181, 328–336. DOI: 10.1016/J.CHEMOSPHERE.2017.04.049.
  • Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. Part I. J. Am. Chem. Soc. 1916, 38, 2221–2295. DOI: 10.1021/JA02268A002/ASSET/JA02268A002.FP.PNG_V03.
  • Freundlich, H. M. F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–471.
  • Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. DOI: 10.1063/1.1746922.
  • Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. DOI: 10.1021/JA01269A023/ASSET/JA01269A023.FP.PNG_V03.
  • Redlich, O.; Peterson, D. L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024–1024. DOI: 10.1021/J150576A611/ASSET/J150576A611.FP.PNG_V03.
  • Toth, J. State Equation of the Solid-Gas Interface Layers. Acta Chim. Hung 1971, 69, 311–328. DOI: 10.1252/KAKORONBUNSHU.32.79.
  • Dubinin, M. M.; Radushkevich, L. V. The Equation of the Characteristic Curve of Activated Charcoal. Dokl. Akad. Nauk. SSSR 1947, 55, 327–329. DOI: 10.1252/JCEJ.10WE271.
  • Karcioğlu Karakaş, Z.; Boncukcuoğlu, R.; Karakaş, İ. H. Adsorptive Properties of As(III) from Aqueous Solution Using Magnetic Nickel Ferrite (NiFe2O4) Nanoparticles: Isotherm and Kinetic Studies. Sep. Sci. Technol. 2017, 52, 21–34. DOI: 10.1080/01496395.2016.1240693.
  • Podder, M. S.; Majumder, C. B. SD/MnFe2O4 Composite, a Biosorbent for as(III) and as(V) Removal from Wastewater: Optimization and Isotherm Study. J. Mol. Liq. 2015, 212, 382–404. DOI: 10.1016/j.molliq.2015.09.011.
  • Kumar, S.; Nair, R. R.; Pillai, P. B.; Gupta, S. N.; Iyengar, M. A. R.; Sood, A. K. Graphene Oxide–MnFe2O4 Magnetic Nanohybrids for Efficient Removal of Lead and Arsenic from Water. ACS Appl. Mater. Interfaces 2014, 6, 17426–17436. DOI: 10.1021/AM504826Q.
  • Vijayaraghavan, K.; Padmesh, T. V. N.; Palanivelu, K.; Velan, M. Biosorption of Nickel(II) Ions onto Sargassum Wightii: Application of Two-Parameter and Three-Parameter Isotherm Models. J. Hazard Mater. 2006, 133, 304–308. DOI: 10.1016/J.JHAZMAT.2005.10.016.
  • Mohammadi Nodeh, M. K.; Gabris, M. A.; Rashidi Nodeh, H.; Esmaeili Bidhendi, M. Efficient Removal of Arsenic(III) from Aqueous Media Using Magnetic Polyaniline-Doped Strontium–Titanium Nanocomposite. Environ. Sci. Pollut. Res. Int. 2018, 25, 16864–16874. 10.1007/S11356-018-1870-0/TABLES/5.
  • Nikić, J.; Watson, M. A.; Isakovski, M. K.; Tubić, A.; Šolić, M.; Kordić, B.; Agbaba, J. Synthesis, Characterization and Application of Magnetic Nanoparticles Modified with Fe-Mn Binary Oxide for Enhanced Removal of as(III) and as(V). Environ. Technol. 2021, 42, 2527–2539. DOI: 10.1080/09593330.2019.1705919.
  • de Oliveira, H. A. L.; Campos, A. F. C.; Gomide, G.; Zhang, Y.; Ghoshal, S. Elaboration of a Core@Shell Bimagnetic Nanoadsorbent (CoFe2O4@γ-Fe2O3) for the Removal of As(V) from Water. Colloids Surf. A Physicochem. Eng. Asp. 2020, 600, 125002. DOI: 10.1016/j.colsurfa.2020.125002.
  • Yang, J. C.; Yin, X. B. CoFe2O4@MIL-100(Fe) Hybrid Magnetic Nanoparticles Exhibit Fast and Selective Adsorption of Arsenic with High Adsorption Capacity. Sci. Rep. 2017, 7, 40955. DOI: 10.1038/srep40955.
  • Joshi, A.; Chaudhuri, M. Removal of Arsenic from Ground Water by Iron Oxide-Coated Sand. J. Environ. Eng. 1996, 122, 769–771. DOI: 10.1061/(ASCE)0733-9372(1996)122:8(769).
  • Huang, J. G.; Liu, J. C. Enhanced Removal of As(V) from Water with Iron-Coated Spent Catalyst. Sep. Sci. Technol. 1997, 32, 1557–1569. DOI: 10.1080/01496399708004066.
  • Chaudhry, S. A.; Zaidi, Z.; Siddiqui, S. I. Isotherm, Kinetic and Thermodynamics of Arsenic Adsorption onto Iron-Zirconium Binary Oxide-Coated Sand (IZBOCS): Modelling and Process Optimization. J. Mol. Liq. 2017, 229, 230–240. DOI: 10.1016/j.molliq.2016.12.048.
  • Maji, S. K.; Kao, Y. H.; Liao, P. Y.; Lin, Y. J.; Liu, C. W. Implementation of the Adsorbent Iron-Oxide-Coated Natural Rock (IOCNR) on Synthetic As(III) and on Real Arsenic-Bearing Sample with Filter. Appl. Surf. Sci. 2013, 284, 40–48. DOI: 10.1016/j.apsusc.2013.06.154.
  • Vu, H. C.; Dwivedi, A. D.; Le, T. T.; Seo, S. H.; Kim, E. J.; Chang, Y. S. Magnetite Graphene Oxide Encapsulated in Alginate Beads for Enhanced Adsorption of Cr(VI) and As(V) from Aqueous Solutions: Role of Crosslinking Metal Cations in pH Control. Chem. Eng. J. 2017, 307, 220–229. DOI: 10.1016/j.cej.2016.08.058.
  • Babu, C. M.; Palanisamy, B.; Sundaravel, B.; Palanichamy, M.; Murugesan, V. A Novel Magnetic Fe3O4/SiO2 Core–Shell Nanorods for the Removal of Arsenic. J. Nanosci. Nanotechnol. 2013, 13, 2517–2527. DOI: 10.1166/JNN.2013.7376.
  • Feng, L.; Cao, M.; Ma, X.; Zhu, Y.; Hu, C. Superparamagnetic High-Surface-Area Fe3O4 Nanoparticles as Adsorbents for Arsenic Removal. J. Hazard Mater. 2012, 217–218, 439–446. DOI: 10.1016/J.JHAZMAT.2012.03.073.
  • Liu, Z.; Zhang, F. S.; Sasai, R. Arsenate Removal from Water Using Fe3O4-Loaded Activated Carbon Prepared from Waste Biomass. Chem. Eng. J. 2010, 160, 57–62. DOI: 10.1016/j.cej.2010.03.003.
  • Sahu, U. K.; Sahu, S.; Mahapatra, S. S.; Patel, R. K. Cigarette Soot Activated Carbon Modified with Fe3O4 Nanoparticles as an Effective Adsorbent for as(III) and as(V): Material Preparation, Characterization and Adsorption Mechanism Study. J. Mol. Liq. 2017, 243, 395–405. DOI: 10.1016/j.molliq.2017.08.055.
  • Mishra, A. K.; Ramaprabhu, S. Magnetite Decorated Multiwalled Carbon Nanotube Based Supercapacitor for Arsenic Removal and Desalination of Seawater. J. Phys. Chem. C 2010, 114, 2583–2590. DOI: 10.1021/JP911631W/ASSET/IMAGES/JP-2009-11631W_M006.GIF.
  • Sankararamakrishnan, N.; Gupta, A.; Vidyarthi, S. R. Enhanced Arsenic Removal at Neutral pH Using Functionalized Multiwalled Carbon Nanotubes. J. Environ. Chem. Eng. 2014, 2, 802–810. DOI: 10.1016/j.jece.2014.02.010.
  • Park, W. K.; Yoon, Y.; Kim, S.; Yoo, S.; Do, Y.; Kang, J. W.; Yoon, D. H.; Yang, W. S. Feasible Water Flow Filter with Facilely Functionalized Fe3O4-Non-Oxidative Graphene/CNT Composites for Arsenic Removal. J. Environ. Chem. Eng. 2016, 4, 3246–3252. DOI: 10.1016/j.jece.2016.06.028.
  • Jamali‐Behnam, F.; Najafpoor, A. A.; Davoudi, M.; Rohani‐Bastami, T.; Alidadi, H.; Esmaily, H.; Dolatabadi, M. Adsorptive Removal of Arsenic from Aqueous Solutions Using Magnetite Nanoparticles and Silica-Coated Magnetite Nanoparticles. Environ. Prog. Sustain. Energy 2018, 37, 951–960. DOI: 10.1002/ep.12751.
  • Wang, S.; Gao, B.; Li, Y.; Creamer, A. E.; He, F. Adsorptive Removal of Arsenate from Aqueous Solutions by Biochar Supported Zero-Valent Iron Nanocomposite: Batch and Continuous Flow Tests. J. Hazard Mater. 2017, 322, 172–181. DOI: 10.1016/J.JHAZMAT.2016.01.052.
  • Yürüm, A.; Kocabaş-Atakli, Z. Ö.; Sezen, M.; Semiat, R.; Yürüm, Y. Fast Deposition of Porous Iron Oxide on Activated Carbon by Microwave Heating and Arsenic (V) removal from Water. Chem. Eng. J. 2014, 242, 321–332. DOI: 10.1016/j.cej.2014.01.005.
  • Tamaddoni Moghaddam, S.; Naimi-Jamal, M. R.; Rohlwing, A.; Hussein, F. B.; Abu-Zahra, N. High Removal Capacity of Arsenic from Drinking Water Using Modified Magnetic Polyurethane Foam Nanocomposites. J. Polym. Environ. 2019, 27, 1497–1504. DOI: 10.1007/S10924-019-01446-7/TABLES/3.
  • Sherlala, A. I. A.; Raman, A. A. A.; Bello, M. M.; Buthiyappan, A. Adsorption of Arsenic Using Chitosan Magnetic Graphene Oxide Nanocomposite. J. Environ. Manage. 2019, 246, 547–556. DOI: 10.1016/J.JENVMAN.2019.05.117.
  • Kumar, A. S. K.; Jiang, S. J. Synthesis of Magnetically Separable and Recyclable Magnetic Nanoparticles Decorated with β-Cyclodextrin Functionalized Graphene Oxide an Excellent Adsorption of as(V)/(III). J. Mol. Liq. 2017, 237, 387–401. DOI: 10.1016/j.molliq.2017.04.093.
  • Doušová, B.; Grygar, T.; Martaus, A.; Fuitová, L.; Koloušek, D.; Machovič, V. Sorption of AsV on Aluminosilicates Treated with FeII Nanoparticles. J. Colloid Interface Sci. 2006, 302, 424–431. DOI: 10.1016/J.JCIS.2006.06.054.
  • Yu, X.; Tong, S.; Ge, M.; Zuo, J.; Cao, C.; Song, W. One-Step Synthesis of Magnetic Composites of Cellulose@Iron Oxide Nanoparticles for Arsenic Removal. J. Mater. Chem. A 2013, 1, 959–965. DOI: 10.1039/C2TA00315E.
  • Thy, L. T. M.; Thuong, N. H.; Tu, T. H.; My, N. H. T.; Tuong, H. H. P.; Nam, H. M.; Phong, M. T.; Hieu, N. H. Fabrication and Adsorption Properties of Magnetic Graphene Oxide Nanocomposites for Removal of Arsenic (V) from Water. Adsorpt. Sci. Technol. 2020, 38, 240–253. DOI: 10.1177/0263617420942710/ASSET/IMAGES/LARGE/10.1177_0263617420942710-FIG2.JPEG.
  • Sheng, G.; Li, Y.; Yang, X.; Ren, X.; Yang, S.; Hu, J.; Wang, X. Efficient Removal of Arsenate by Versatile Magnetic Graphene Oxide Composites. RSC Adv. 2012, 2, 12400–12407. DOI: 10.1039/c2ra21623j.
  • Wang, C.; Luo, H.; Zhang, Z.; Wu, Y.; Zhang, J.; Chen, S. Removal of As(III) and As(V) from Aqueous Solutions Using Nanoscale Zero Valent Iron-Reduced Graphite Oxide Modified Composites. J. Hazard Mater. 2014, 268, 124–131. DOI: 10.1016/J.JHAZMAT.2014.01.009.
  • Tajuddin Sikder, M.; Tanaka, S.; Saito, T.; Kurasaki, M. Application of Zerovalent Iron Impregnated Chitosan-Caboxymethyl-β-Cyclodextrin Composite Beads as Arsenic Sorbent. J. Environ. Chem. Eng. 2014, 2, 370–376. DOI: 10.1016/j.jece.2014.01.009.
  • Lin, Y. J.; Cao, W. Z.; Ouyang, T.; Chen, B. Y.; Chang, C. T. Developing Sustainable Graphene-Doped Titanium Nano Tube Coated to Superparamagnetic Nanoparticles for Arsenic Recovery. J. Taiwan Inst. Chem. Eng. 2017, 70, 311–318. DOI: 10.1016/j.jtice.2016.10.020.
  • Lin, Y. J.; Cao, W. Z.; Ouyang, T.; Mohan, S.; Chang, C. T. Adsorption Mechanism of Magnetic Nanoparticles Doped with Graphene Oxide and Titanium Nanotubes for As(III) Removal. Materialia 2018, 3, 79–89. DOI: 10.1016/j.mtla.2018.09.005.
  • Guivar, J. A. R.; Bustamante, A.; Gonzalez, J. C.; Sanches, E. A.; Morales, M. A.; Raez, J. M.; Lopez-Munoz, M. J.; Arencibia, A. Adsorption of Arsenite and Arsenate on Binary and Ternary Magnetic Nanocomposites with High Iron Oxide Content. Appl. Surf. Sci. 2018, 454, 87–100. DOI: 10.1016/j.apsusc.2018.04.248.
  • Deng, M.; Wu, X.; Zhu, A.; Zhang, Q.; Liu, Q. Well-Dispersed TiO2 Nanoparticles Anchored on Fe3O4 Magnetic Nanosheets for Efficient Arsenic Removal. J. Environ. Manage. 2019, 237, 63–74. DOI: 10.1016/J.JENVMAN.2019.02.037.
  • Babu, C. M.; Vinodh, R.; Sundaravel, B.; Abidov, A.; Peng, M. M.; Cha, W. S.; Jang, H. T. Characterization of Reduced Graphene Oxide Supported Mesoporous Fe2O3/TiO2 Nanoparticles and Adsorption of As(III) and As(V) from Potable Water. J. Taiwan Inst. Chem. Eng. 2016, 62, 199–208. DOI: 10.1016/j.jtice.2016.02.005.
  • Paul, B.; Parashar, V.; Mishra, A. Graphene in the Fe3O4 Nanocomposite Switching the Negative Influence of Humic Acid Coating into an Enhancing Effect in the Removal of Arsenic from Water. Environ. Sci.: Water Res. Technol. 2015, 1, 77–83. DOI: 10.1039/C4EW00034J.
  • Rashid, M.; Sterbinsky, G. E.; Pinilla, M. Á. G.; Cai, Y.; O’Shea, K. E. Kinetic and Mechanistic Evaluation of Inorganic Arsenic Species Adsorption onto Humic Acid Grafted Magnetite Nanoparticles. J. Phys. Chem. C 2018, 122, 13540–13547. DOI: 10.1021/ACS.JPCC.7B12438/ASSET/IMAGES/MEDIUM/JP-2017-124387_0001.GIF.
  • Raval, N. P.; Kumar, M. Geogenic Arsenic Removal through Core–Shell Based Functionalized Nanoparticles: Groundwater In-Situ Treatment Perspective in the Post–COVID Anthropocene. J. Hazard Mater. 2021, 402, 123466. DOI: 10.1016/J.JHAZMAT.2020.123466.
  • Bangari, R. S.; Singh, A. K.; Namsani, S.; Singh, J. K.; Sinha, N. Magnetite-Coated Boron Nitride Nanosheets for the Removal of Arsenic(V) from Water. ACS Appl. Mater. Interfaces 2019, 11, 19017–19028. 10.1021/ACSAMI.8B22401/ASSET/IMAGES/LARGE/AM-2018-22401S_0011.JPEG.
  • Tripathy, M.; Padhiari, S.; Hota, G. L-Cysteine-Functionalized Mesoporous Magnetite Nanospheres: Synthesis and Adsorptive Application toward Arsenic Remediation. J. Chem. Eng. Data 2020, 65, 3906–3919. DOI: 10.1021/ACS.JCED.0C00250/SUPPL_FILE/JE0C00250_SI_001.PDF.
  • Predoi, D.; Iconaru, S. L.; Predoi, M. V.; Motelica-Heino, M. Removal and Oxidation of As(III) from Water Using Iron Oxide Coated CTAB as Adsorbent. Polymers 2020, 12, 1687. DOI: 10.3390/polym12081687.
  • Liu, J.; Kong, L.; Huang, X.; Liu, M.; Li, L. Removal of Arsenic(v) from Aqueous Solutions Using Sulfur-Doped Fe3O4 Nanoparticles. RSC Adv. 2018, 8, 40804–40812. DOI: 10.1039/C8RA08699K.
  • Frazer, L. Metal Attraction: An Ironclad Solution to Arsenic Contamination? Environ. Health Perspect. 2005, 113, A398–A401. DOI: 10.1289/EHP.113-A398.
  • Gil, L. Cork: Sustainability and New Applications. Front. Mater. 2015, 1, 38. DOI: 10.3389/FMATS.2014.00038/BIBTEX.
  • Thirunavukkarasu, O. S.; Viraraghavan, T.; Subramanian, K. S.; Chaalal, O.; Islam, M. R. Arsenic Removal in Drinking Water—Impacts and Novel Removal Technologies. Energy Sources 2005, 27, 209–219. DOI: 10.1080/00908310490448271.
  • Wasay, S. A.; Haran, M. J.; Tokunaga, S. Adsorption of Fluoride, Phosphate, and Arsenate Ions on Lanthanum-Impregnated Silica Gel. Water Environ. Res. 1996, 68, 295–300. DOI: 10.2175/106143096X127730.
  • Wasay, S. A.; Tokunaga, S.; Park, S. W. Removal of Hazardous Anions from Aqueous Solutions by La(Lll)- and Y(Lll)-Lmpregnated Alumina. Sep. Sci. Technol. 1996, 31, 1501–1514. DOI: 10.1080/01496399608001409.
  • Pena, M. E.; Korfiatis, G. P.; Patel, M.; Lippincott, L.; Meng, X. Adsorption of As(V) and As(III) by Nanocrystalline Titanium Dioxide. Water Res. 2005, 39, 2327–2337. DOI: 10.1016/J.WATRES.2005.04.006.
  • Yoshitake, H.; Yokoi, T.; Tatsumi, T. Adsorption Behavior of Arsenate at Transition Metal Cations Captured by Amino-Functionalized Mesoporous Silicas. Chem. Mater. 2003, 15, 1713–1721. DOI: 10.1021/CM0218007/ASSET/IMAGES/LARGE/CM0218007F00008.JPEG.
  • Hao, L.; Liu, M.; Wang, N.; Li, G. A Critical Review on Arsenic Removal from Water Using Iron-Based Adsorbents. RSC Adv. 2018, 8, 39545–39560. DOI: 10.1039/C8RA08512A.
  • Liu, C. H.; Chuang, Y. H.; Chen, T. Y.; Tian, Y.; Li, H.; Wang, M. K.; Zhang, W. Mechanism of Arsenic Adsorption on Magnetite Nanoparticles from Water: Thermodynamic and Spectroscopic Studies. Environ. Sci. Technol. 2015, 49, 7726–7734. 10.1021/ACS.EST.5B00381/SUPPL_FILE/ES5B00381_SI_001.PDF.
  • Dutta, S.; Manna, K.; Srivastava, S. K.; Gupta, A. K.; Yadav, M. K. Hollow Polyaniline Microsphere/Fe3O4 Nanocomposite as an Effective Adsorbent for Removal of Arsenic from Water. Sci. Rep. 2020, 10, 1–14. DOI: 10.1038/s41598-020-61763-z.
  • Shabnam, R.; Rahman, M. A.; Miah, M. A. J.; Sharafat, M. K.; Islam, H. M. T.; Gafur, M. A.; Ahmad, H. Novel Magnetically Doped Epoxide Functional Cross-Linked Hydrophobic Poly(Lauryl Methacrylate) Composite Polymer Particles for Removal of as(III) from Aqueous Solution. Ind. Eng. Chem. Res. 2017, 56, 7747–7756. DOI: 10.1021/ACS.IECR.7B01741/ASSET/IMAGES/LARGE/IE-2017-01741V_0009.JPEG.
  • Mishra, P. K.; Gahlyan, P.; Kumar, R.; Rai, P. K. Aero-Gel Based Cerium Doped Iron Oxide Solid Solution for Ultrafast Removal of Arsenic. ACS Sustain. Chem. Eng. 2018, 6, 10668–10678. DOI: 10.1021/ACSSUSCHEMENG.8B02006/ASSET/IMAGES/LARGE/SC-2018-020065_0009.JPEG.
  • Zhu, H.; Jia, Y.; Wu, X.; Wang, H. Removal of Arsenic from Water by Supported Nano Zero-Valent Iron on Activated Carbon. J. Hazard Mater. 2009, 172, 1591–1596. DOI: 10.1016/J.JHAZMAT.2009.08.031.
  • Wen, Z.; Zhang, Y.; Dai, C.; Chen, B.; Guo, S.; Yu, H.; Wu, D. Synthesis of Ordered Mesoporous Iron Manganese Bimetal Oxides for Arsenic Removal from Aqueous Solutions. Microporous Mesoporous Mater. 2014, 200, 235–244. DOI: 10.1016/j.micromeso.2014.08.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.